Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Abdullah Idris Enagi"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    A Novel Seventh-Order Implicit Block Hybrid Nyström-Type Method for Second- Order Boundary Value Problems
    (INTERNATIONAL JOURNAL OF RESEARCH AND SCIENTIFIC INNOVATION (IJRSI), 2023-11-05) Joel Olusegun Ajinuhi; Umaru Mohammed; Abdullah Idris Enagi; JIMOH, OMANANYI RAZAQ
    This paper introduces a novel approach for solving second-order nonlinear differential equations, with a primary focus on the Bratu problem, which holds significant importance in diverse scientific areas. Existing methods for solving this problem have limitations, prompting the development of the Block Hybrid Nystrom-Type Method (BHNTM). BHNTM utilizes the Bhaskara points derived, using the Bhaskara cosine approximation formula. The method seeks a numerical solution in the form of a power series polynomial, efficiently determining coefficients. The paper discusses BHNTM's convergence, zero stability, and consistency properties, substantiated through numerical experiments, highlighting its accuracy as a solver for Bratu-type equations. This research contributes to the field of numerical analysis by offering an alternative, effective approach to tackle complex second-order nonlinear differential equations, addressing critical challenges in various scientific domains.
  • No Thumbnail Available
    Item
    Mathematical model for the control of lymphatic filariasis transmission dynamics
    (SCIK Publishing Corporation, 2021-02-23) Festus Abiodun Oguntolu; Gbolahan Bolarin; Olumuyiwa James Peter; Abdullah Idris Enagi; Kayode Oshinubi
    In this paper, a mathematical model for the transmission dynamics of lymphatic filariasis is presented by incorporating the infected without symptom, the infected with symptom and treatment compartments. The model is shown to have two equilibrium states: the disease-free equilibrium (DFE) and the endemic equilibrium states. An explicit formula for the effective reproduction number was obtained in terms of the demographic and epidemiological parameters of the model. Using the method of linearization, the disease-free equilibrium state was found to be locally asymptotically stable if the basic reproduction number is less than unity. By constructing a suitable Lyapunov function, the disease-free equilibrium state was found to be globally asymptotically stable. This means that lymphatic filariasis could be put under control in a population when the effective reproduction number is less than one. The endemic equilibrium state was found to be locally asymptotically stable. By constructing yet another Lyapunov function, the endemic equilibrium state was found to be globally asymptotically stable under certain conditions. Sensitivity analysis was carried out on the effective reproduction number, the most sensitive parameters were the treatment rate of human population and the infected rate of human population. Results from the simulation carried out showed that treatment level coverage of human population should target a success rate of 75% for LF to be under control in the population.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify