Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Aliyu, A. H."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Stability Analysis for Mathematical Modeling of Dengue Fever Transmission and Control
    (Proceedings of International Conference on Contemporary Developments in Mathematical Sciences (ICCDMS), 2021-04-13) Aliyu, A. H.; Akinwande, N. I.; Somma Samuel Abu
    Dengue fever is one of the greatest health challenges in the present world. In this work, mathematical modeling of dengue fever transmission and control was formulated. The model considered the human population h N and the vector population m N which are further subdivided into six classes, susceptible human 𝑆, infected human 𝐼, temporary recovered human class 1 R, permanently recovered human class 2 R , susceptible mosquito 1 M, and infected mosquito class 2 M . The Disease Free Equilibrium (DFE) point was obtained and the basic Reproduction number 0 R was computed. The Disease Free Equilibrium (DFE) is locally and globally asymptotically stable when 1 0  R .
  • No Thumbnail Available
    Item
    Stability Analysis for Mathematical Modeling of Dengue Fever Transmission and Control
    (Proceedings of International Conference on Contemporary Developments in Mathematical Sciences (ICCDMS), 2021-04-13) Aliyu, A. H.; Akinwande, N. I.; Somma, Samuel Abu
    Dengue fever is one of the greatest health challenges in the present world. In this work, mathematical modeling of dengue fever transmission and control was formulated. The model considered the human population h N and the vector population m N which are further subdivided into six classes, susceptible human 𝑆, infected human 𝐼, temporary recovered human class 1 R , permanently recovered human class 2 R , susceptible mosquito 1 M , and infected mosquito class 2 M . The Disease Free Equilibrium (DFE) point was obtained and the basic Reproduction number 0 R was computed. The Disease Free Equilibrium (DFE) is locally and globally asymptotically stable when R0  1.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify