Browsing by Author "C. Y. Ishola"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Approximate Solution of Typhoid Fever Model by Variational Iteration Method(ATBU, Journal of Science, Technology & Education (JOSTE), 2018-09) A. F. Adebisi; O. J. Peter; T. A. Ayoola; F. A. Oguntolu; C. Y. IsholaIn this paper, a deterministic mathematical model involving the transmission dynamics of typhoid fever is presented and studied. Basic idea of the disease transmission using compartmental modeling is discussed. The aim of this paper is to apply Variational Iteration Method (VIM) to solve typhoid fever model for a given constant population. This mathematical model is described by nonlinear first order ordinary differential equations. First, we find the solution of the model by using Variation Iteration Method (VIM). The validity of the VIM in solving the model is established by classical fourth-order Runge-Kutta method (RK4) implemented in Maple 18. In order to show the efficiency of the method we compare the solutions obtained by VIM and RK4. We illustrated the profiles of the solutions of each of the compartments, from which we speculate that the VIM and RK4 solutions agreed well.Item Derivation of the Reproduction Numbers for Cholera Model(Journal of the Nigerian Association of Mathematical Physcis (TNAMP), 2018-03) A. A. Ayoade; O. J. Peter; F. A. Oguntolu; C. Y. IsholaIt is expected of the epidemiologists to predict whether a disease will spread in a community or not and at the same time, forecast the degree of severity of the disease if it spreads in the community. By that, a cholera model is formulated and the procedure for obtaining the effective reproduction number and the basic reproduction number of the model is presented following the Next Generational MAtrix approach. The two reproduction numbers (the effective reproduction number and the basic reproduction number) are successfully derived. While the effective reproduction number can be used to predict the effectiveness of intervention strategies in inhibiting the spread of cholera disease, the basic reproduction number can be used to forecast the severity of cholera spread in a community where the intervention strategies are not on ground.Item Mathematical model for the control of infectious disease(African Journals Online (AJOL), 2018-05-03) O. J. Peter; O. B. Akinduko; F. A. Oguntolu; C. Y. IsholaWe proposed a mathematical model of infectious disease dynamics. The model is a system of first order ordinary differential equations. The population is partitioned into three compartments of Susceptible S(t) , Infected I(t) and Recovered R(t). Two equilibria states exist: the disease-free equilibrium which is locally asymptotically stable if Ro < 1 and unstable if Ro > 1. Numerical simulation of the model shows that an increase in vaccination leads to low disease prevalence in a population.