Browsing by Author "Hasan S. Panigoro"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Mathematical model for control of tuberculosis epidemiology(Springer Science and Business Media LLC, 2022-04-22) Mayowa M. Ojo; Olumuyiwa James Peter; Emile Franc Doungmo Goufo; Hasan S. Panigoro; Festus Abiodun OguntoluTuberculosis is an infectious disease caused by bacteria that most commonly affects the lungs. Due to its high mortality, it remains a global health issue, and it is one of the leading causes of death in the majority of sub-Saharan African countries. We formulate a six-compartmental deterministic model to investigate the impact of vaccination on the dynamics of tuberculosis in a given population. The qualitative behaviors of the presented model were examined, and the respective threshold quantity was obtained. The tuberculosis-free equilibrium of the system is said to be locally asymptotically stable when the effective reproduction number and unstable otherwise. Furthermore, we examined the stability of the endemic equilibrium, and the conditions for the existence of backward bifurcation are discussed. A numerical simulation was performed to demonstrate and support the theoretical findings. The result shows that reducing the effective contact with an infected person and enhancing the rate of vaccinating susceptible individuals with high vaccine efficacy will reduce the burden of tuberculosis in the population.Item Mathematical Model of COVID-19 Pandemic with Double Dose Vaccination(Springer Science and Business Media LLC, 2023-03-06) Olumuyiwa James Peter; Hasan S. Panigoro; Afeez Abidemi; Mayowa M. Ojo; Festus Abiodun OguntoluThis paper is concerned with the formulation and analysis of an epidemic model of COVID-19 governed by an eight-dimensional system of ordinary differential equations, by taking into account the first dose and the second dose of vaccinated individuals in the population. The developed model is analyzed and the threshold quantity known as the control reproduction number is obtained. We investigate the equilibrium stability of the system, and the COVID-free equilibrium is said to be locally asymptotically stable when the control reproduction number is less than unity, and unstable otherwise. Using the least-squares method, the model is calibrated based on the cumulative number of COVID-19 reported cases and available information about the mass vaccine administration in Malaysia between the 24th of February 2021 and February 2022. Following the model fitting and estimation of the parameter values, a global sensitivity analysis was performed by using the Partial Rank Correlation Coefficient (PRCC) to determine the most influential parameters on the threshold quantities. The result shows that the effective transmission rate, the rate of first vaccine dose, the second dose vaccination rate and the recovery rate due to the second dose of vaccination are the most influential of all the model parameters. We further investigate the impact of these parameters by performing a numerical simulation on the developed COVID-19 model. The result of the study shows that adhering to the preventive measures has a huge impact on reducing the spread of the disease in the population. Particularly, an increase in both the first and second dose vaccination rates reduces the number of infected individuals, thus reducing the disease burden in the population.Item Mathematical Modeling on the Transmission Dynamics of Diphtheria with Optimal Control Strategies(Department of Mathematics, Universitas Negeri Gorontalo, 2025-03-29) Festus Abiodun Oguntolu; Olumuyiwa James Peter; Benjamin Idoko Omede; Ghaniyyat Bolanle Balogun; Aminat Olabisi Ajiboye; Hasan S. PanigoroDiphtheria is an acute bacterial infection caused by Corynebacterium diphtheriae, characterized by the formation of a pseudo-membrane in the throat, which can lead to airway obstruction and systemic complications. Despite the availability of effective vaccines, diphtheria remains a significant public health concern in many regions, particularly in areas with low immunization coverage. In this study, we formulated and rigorously analyzed a deter ministic epidemiological mathematical model to gain insight into the transmission dynamics of Diphtheria infection, incorporating the concentration of Corynebacterium Diphtheriae in the environment. The analysis of the model begins with the computation of the basic reproduction number and the examination of the local stability of the disease-free equilibrium using the Routh-Hurwitz criterion. An in-depth analysis of the model reveals that the model undergoes the phenomenon of backward bifurcation. This characteristic poses significant hurdles in effectively controlling Diph theria infection within the population. However, under the assumption of no re-infection of Diphtheria infection after recovery, the disease-free equilibrium point is globally asymptotically stable whenever the basic reproduction num ber is less than one. Furthermore, the sensitivity analysis of the basic reproduction number was carried out in order to determine the impact of each of the model basic parameters that contribute to the transmission of the disease. Utilizing the optimal control theory to effectively curb the spread of Diphtheria, We introduced two time dependent control measures, to mitigate the spread of Diphtheria. These time dependent control measures represent preventive actions, such as public enlightenment campaign to sensitize and educate the general public on the dynamics of Diph theria and proper personal hygiene which includes regular washing of hands to prevent susceptible individuals from acquiring Diphtheria, and environmental sanitation practices such as cleaning of surfaces and door handle to reduced the concentration of Corynebacterium diphtheriae in the environment. The results from the numerical simulations reveal that Diphtheria infection can successfully be controlled and mitigated within the population if we can increase the vaccination rate and the decay rate of Corynebacterium Diphtheriae in the environment, as well as properly and effectively implementing these optimal control measures simultaneously.