Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mayowa M. Ojo"

Filter results by typing the first few letters
Now showing 1 - 6 of 6
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    A Mathematical Model Analysis of Meningitis with Treatment and Vaccination in Fractional Derivatives
    (Springer Science and Business Media LLC, 2022-04-26) Olumuyiwa James Peter; Abdullahi Yusuf; Mayowa M. Ojo; Sumit Kumar; Nitu Kumari; Festus Abiodun Oguntolu
    In this paper, we develop a new mathematical model based on the Atangana Baleanu Caputo (ABC) derivative to investigate meningitis dynamics. We explain why fractional calculus is useful for modeling real-world problems. The model contains all of the possible interactions that cause disease to spread in the population. We start with classical differential equations and extended them into fractional-order using ABC. Both local and global asymptotic stability conditions for meningitis-free and endemic equilibria are determined. It is shown that the model undergoes backward bifurcation, where the locally stable disease-free equilibrium coexists with an endemic equilibrium. We also find conditions under which the model’s disease-free equilibrium is globally asymptotically stable. The approach of fractional order calculus is quite new for such a biological phenomenon. The effects of vaccination and treatment on transmission dynamics of meningitis are examined. These findings are based on various fractional parameter values and serve as a control parameter for identifying important disease-control techniques. Finally, the acquired results are graphically displayed to support our findings.
  • No Thumbnail Available
    Item
    Mathematical model for control of tuberculosis epidemiology
    (Springer Science and Business Media LLC, 2022-04-22) Mayowa M. Ojo; Olumuyiwa James Peter; Emile Franc Doungmo Goufo; Hasan S. Panigoro; Festus Abiodun Oguntolu
    Tuberculosis is an infectious disease caused by bacteria that most commonly affects the lungs. Due to its high mortality, it remains a global health issue, and it is one of the leading causes of death in the majority of sub-Saharan African countries. We formulate a six-compartmental deterministic model to investigate the impact of vaccination on the dynamics of tuberculosis in a given population. The qualitative behaviors of the presented model were examined, and the respective threshold quantity was obtained. The tuberculosis-free equilibrium of the system is said to be locally asymptotically stable when the effective reproduction number and unstable otherwise. Furthermore, we examined the stability of the endemic equilibrium, and the conditions for the existence of backward bifurcation are discussed. A numerical simulation was performed to demonstrate and support the theoretical findings. The result shows that reducing the effective contact with an infected person and enhancing the rate of vaccinating susceptible individuals with high vaccine efficacy will reduce the burden of tuberculosis in the population.
  • No Thumbnail Available
    Item
    Mathematical Model of COVID-19 Pandemic with Double Dose Vaccination
    (Springer Science and Business Media LLC, 2023-03-06) Olumuyiwa James Peter; Hasan S. Panigoro; Afeez Abidemi; Mayowa M. Ojo; Festus Abiodun Oguntolu
    This paper is concerned with the formulation and analysis of an epidemic model of COVID-19 governed by an eight-dimensional system of ordinary differential equations, by taking into account the first dose and the second dose of vaccinated individuals in the population. The developed model is analyzed and the threshold quantity known as the control reproduction number is obtained. We investigate the equilibrium stability of the system, and the COVID-free equilibrium is said to be locally asymptotically stable when the control reproduction number is less than unity, and unstable otherwise. Using the least-squares method, the model is calibrated based on the cumulative number of COVID-19 reported cases and available information about the mass vaccine administration in Malaysia between the 24th of February 2021 and February 2022. Following the model fitting and estimation of the parameter values, a global sensitivity analysis was performed by using the Partial Rank Correlation Coefficient (PRCC) to determine the most influential parameters on the threshold quantities. The result shows that the effective transmission rate, the rate of first vaccine dose, the second dose vaccination rate and the recovery rate due to the second dose of vaccination are the most influential of all the model parameters. We further investigate the impact of these parameters by performing a numerical simulation on the developed COVID-19 model. The result of the study shows that adhering to the preventive measures has a huge impact on reducing the spread of the disease in the population. Particularly, an increase in both the first and second dose vaccination rates reduces the number of infected individuals, thus reducing the disease burden in the population.
  • No Thumbnail Available
    Item
    Mathematical model of measles transmission dynamics using real data from Nigeria
    (Informa UK Limited, 2022-05-25) Olumuyiwa James Peter; Mayowa M. Ojo; Ratchada Viriyapong; Festus Abiodun Oguntolu
    Measles is a highly contagious and life-threatening disease caused by a virus called morbillivirus, despite the availability of a safe and cost-effective vaccine, it remains a leading cause of death, especially in children. Measles spreads easily from person to person via infected people's coughs and sneezes. It can also be transmitted through direct contact with the mouth or contaminated surfaces. To have a better knowledge of measles epidemiology in Nigeria, we develop a deterministic mathematical model to study the transmission dynamics of the disease in the population. The boundary of the model solution is performed, both equilibrium points are calculated, and the basic reproduction number ℛ0 is determined. We have proved that when ℛ0<1, the disease-free equilibrium point is both locally and globally stable. When ℛ0>1, the endemic equilibrium point exists and is stable if it satisfies Routh–Hurwitz criteria. We demonstrate the model's effectiveness by using a real-life application of the disease spread in Nigeria. We fit the proposed model using available data from Nigeria Center for Disease Control (NCDC) from January to December 2020 to obtain the best fit, this help us to determine the accuracy of the proposed model's representation to the real-world data. We investigate the impact of vaccination rate and hospitalization of infected individuals on the dynamics of measles in the population. The result shows that the combined control strategies reduce the peak of infection faster than the single control strategy.
  • No Thumbnail Available
    Item
    Modeling and optimal control of monkeypox with cost-effective strategies
    (Springer Science and Business Media LLC, 2022-11-22) Olumuyiwa James Peter; Chinwendu E. Madubueze; Mayowa M. Ojo; Festus Abiodun Oguntolu; Tawakalt Abosede Ayoola
    In this work, we develop and analyze a deterministic mathematical model to investigate the dynamics of monkeypox. We examine the local and global stability of the basic model without control variables. The outcome demonstrates that when the reproduction number , the model’s disease-free equilibrium would be locally and globally asymptotically stable. We further analyze the effective control of monkeypox in a given population by formulating and analyzing an optimal control problem. We extend the basic model to include four control variables, namely preventive strategies for transmission from rodents to humans, prevention of infection from human to human, isolation of infected individuals, and treatment of isolated individuals. We established the necessary conditions for the existence of optimal control using Pontryagin’s maximal principle. To illustrate the impact of different control combinations on the spread of monkeypox, we use the fourth-order Runge–Kutta forward–backward sweep approach to simulate the optimality system. A cost-effectiveness study is conducted to educate the public about the most cost-effective method among various control combinations. The results suggest that, of all the combinations considered in this study, implementing preventive strategies for transmission from rodents to humans is the most economical and effective among all competing strategies.
  • No Thumbnail Available
    Item
    Optimizing tuberculosis control: a comprehensive simulation of integrated interventions using a mathematical model
    (Mathematical Modelling and Numerical Simulation with Applications, 2024-09-30) Olumuyiwa James Peter; Afeez Abidemi; Fatmawati Fatmawati; Mayowa M. Ojo; Festus Abiodun Oguntolu
    Tuberculosis (TB) remains a formidable global health challenge, demanding effective control strategies to alleviate its burden. In this study, we introduce a comprehensive mathematical model to unravel the intricate dynamics of TB transmission and assess the efficacy and cost-effectiveness of diverse intervention strategies. Our model meticulously categorizes the total population into seven distinct compartments, encompassing susceptibility, vaccination, diagnosed infectious, undiagnosed infectious, hospitalized, and recovered individuals. Factors such as susceptible individual recruitment, the impact of vaccination, immunity loss, and the nuanced dynamics of transmission between compartments are considered. Notably, we compute the basic reproduction number, providing a quantitative measure of TB transmission potential. Through this comprehensive model, our study aims to offer valuable insights into optimal control measures for TB prevention and control, contributing to the ongoing global efforts to combat this pressing health challenge.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify