Browsing by Author "O. B. Akinduko"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Direct and Indirect Transmission Dynamics of Typhoid Fever Model by Differential Transform Method(ATBU, Journal of Science, Technology & Education (JOSTE), 2018-03) O. J. Peter; M. O. Ibrahim; F. A. Oguntolu; O. B. Akinduko; S. T. AkinyemiThe aim of this paper is to apply the Differential Transformation Method (DTM) to solve typhoid fever model for a given constant population. This mathematical model is described by nonlinear first order ordinary differential equations. First, we find the solution of this model by using the differential transformation method (DTM). In order to show the efficiency of the method, we compare the solutions obtained by DTM and RK4. We illustrated the profiles of the solutions, from which we speculate that the DTM and RK4 solutions agreed well.Item Mathematical model for the control of infectious disease(African Journals Online (AJOL), 2018-05-03) O. J. Peter; O. B. Akinduko; F. A. Oguntolu; C. Y. IsholaWe proposed a mathematical model of infectious disease dynamics. The model is a system of first order ordinary differential equations. The population is partitioned into three compartments of Susceptible S(t) , Infected I(t) and Recovered R(t). Two equilibria states exist: the disease-free equilibrium which is locally asymptotically stable if Ro < 1 and unstable if Ro > 1. Numerical simulation of the model shows that an increase in vaccination leads to low disease prevalence in a population.