Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Oluwatobi Oluwaseun Oluwole"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    The Application of Linear Algebra in Machine Learning
    (Paper Presentation at FUT, Minna, Nigeria, 2024-04-22) Khadeejah James Audu; Oluwatobi Oluwaseun Oluwole; Yusuph Amuda Yahaya; Samuel David Egwu
    In the realm of machine learning, incorporating linear algebraic methods has become indispensable, serving as a foundational element in developing and refining various algorithms. This study explores the significant impact of linear algebra on machine learning applications, highlighting its fundamental principles and practical implications. It delves into key concepts such as vector spaces, matrices, eigenvalues, and eigenvectors, which form the mathematical basis of well-established machine learning models. The research provides a comprehensive overview of how linear algebra contributes to tasks such as classification, regression analysis, and dimensionality reduction. It also investigates how linear algebra simplifies data representation and processing, enabling effective handling of large datasets and identification of meaningful patterns. Additionally, the study explores specific machine learning applications like Word/Vector Embedding, Image Compression, and Movie Recommendation systems, demonstrating the critical role of linear algebra. Through case studies and practical examples, the study illustrates how a deep understanding of linear algebra empowers machine learning practitioners to develop robust and scalable solutions. Beyond theoretical frameworks, this research has practical implications for practitioners, researchers, and educators seeking a deeper understanding of the relationship between machine learning and linear algebra. By elucidating these connections, the study contributes to ongoing efforts to improve the efficacy and efficiency of machine learning applications.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify