Browsing by Author "Somma Samuel Abu"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item A 3-Person Non-Zero-Sum Game for Sachet Water Companies(Asian Research Journal of Mathematics, 2022-06-24) Nyor, N.; Muazu, M. I.; Somma Samuel AbuThe business of Sachet water (popularly called pure water) in Nigeria is often competitive due to the high demand for Sachet water by the populace. This is so because sachet water is the most affordable form of pure drinking water in Nigeria. As such, Sachet Water Firms that want to succeed in an ever increasing competitive market need to have the knowledge of Game Theory to identify which strategy will yield better profit independent of the strategy adopted by other competitors. This paper is aimed to investigate and determine the equilibrium point for three Sachet Water Firms using the Nash Equilibrium Method as it provides a systematic approach for deciding the best strategy in competitive situation. The result showed two Nash Equilibriums (promo, promo) and (stay-put, stay-put) with their respective payoffs of (82; 82; 82) and (147; 147; 147).Item A NOTE ON COMBUSTIBLE FOREST MATERIAL (CFM) OF WILDLAND FIRE SPREAD(Proceedings of 3rd SPS Biennial International Conference Federal University of Technology, Minna, Nigeria, 2021-10-28) Zhiri, A. B.; Olayiwola, R. O.; Somma Samuel Abufire is presented. The equations describing the fractional components of forest fire were carefully studied. The reaction before a forest can burn or before fire can spread must involves fuel, heat and oxygen. The coupled dimensionless equations describing the phenomenon have been decoupled using perturbation method and solved analytically using eigen function expansion technique. The results obtained were graphically discussed and analysed. The study revealed that varying Radiation number and Peclet energy number enhances volume fractions of dry organic substance and moisture while they reduced volume fraction of coke.Item Stability Analysis for Mathematical Modeling of Dengue Fever Transmission and Control(Proceedings of International Conference on Contemporary Developments in Mathematical Sciences (ICCDMS), 2021-04-13) Aliyu, A. H.; Akinwande, N. I.; Somma Samuel AbuDengue fever is one of the greatest health challenges in the present world. In this work, mathematical modeling of dengue fever transmission and control was formulated. The model considered the human population h N and the vector population m N which are further subdivided into six classes, susceptible human 𝑆, infected human 𝐼, temporary recovered human class 1 R, permanently recovered human class 2 R , susceptible mosquito 1 M, and infected mosquito class 2 M . The Disease Free Equilibrium (DFE) point was obtained and the basic Reproduction number 0 R was computed. The Disease Free Equilibrium (DFE) is locally and globally asymptotically stable when 1 0 R .