Browsing by Author "T. A. Ayoola"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item A Mathematical Modelling of Lymphatic Filariasis and Malaria Co-infection(Abubakar Tafawa Balewa University, 2022-06-25) F. A. Oguntolu; D. W. Yavalah; C. F. Udom; T. A. Ayoola; A. A. VictorLymphatic Filariasis (LF) and Malaria continue to pose significant public health burden globally and are co-endemic in many sub-Saharan African regions. In this work, we developed and analyzed a mathematical model of Lymphatic filariasis and malaria co-infection model. Friedman and Lunge method was used to find the positivity of the solution, the disease-free equilibrium was obtained, the model stability was analyzed, and the basic reproductive number was also obtained. The findings suggest that with the use of a bed-net and insecticide as a control measure, the treatment of LF and malaria co-infection can be reduced to a minimum.Item Approximate Solution of Typhoid Fever Model by Variational Iteration Method(ATBU, Journal of Science, Technology & Education (JOSTE), 2018-09) A. F. Adebisi; O. J. Peter; T. A. Ayoola; F. A. Oguntolu; C. Y. IsholaIn this paper, a deterministic mathematical model involving the transmission dynamics of typhoid fever is presented and studied. Basic idea of the disease transmission using compartmental modeling is discussed. The aim of this paper is to apply Variational Iteration Method (VIM) to solve typhoid fever model for a given constant population. This mathematical model is described by nonlinear first order ordinary differential equations. First, we find the solution of the model by using Variation Iteration Method (VIM). The validity of the VIM in solving the model is established by classical fourth-order Runge-Kutta method (RK4) implemented in Maple 18. In order to show the efficiency of the method we compare the solutions obtained by VIM and RK4. We illustrated the profiles of the solutions of each of the compartments, from which we speculate that the VIM and RK4 solutions agreed well.Item Exploring the dynamics of lymphatic filariasis through a mathematical model and analysis with Holling type II treatment functions(Iranian Journal of Numerical Analysis and Optimization, 2025-06) F. A. Oguntolu; O. J. Peter; B. I. Omede; T. A. Ayoola; G. B. BalogunThis paper presents a robust deterministic mathematical model incorporat-ing Holling type II treatment functions to comprehensively investigate the dynamics of Lymphatic filariasis. Through qualitative analysis, the model demonstrates the occurrence of backward bifurcation when the basic re-production number is less than one. Moreover, numerical simulations are employed to illustrate and validate key analytical findings. These simula-tion results emphasize the significance of accessible medical resources and the efficacy of prophylactic drugs in eradicating Lymphatic filariasis. The findings show that, enhancing medical resource availability and implement-ing effective treatment strategies in rural areas and regions vulnerable to Lymphatic filariasis is crucial for combating the transmission and control of this disease.Item Mathematical model and analysis of the soil-transmitted helminth infections with optimal control(Springer Science and Business Media LLC, 2024-02) Festus Abiodun Oguntolu; Olumuyiwa James Peter; Abubakar Yusuf; B. I. Omede; G. Bolarin; T. A. AyoolaSoil-transmitted helminth diseases are highly prevalent in impoverished regions and pose a significant health burden on the global population. These diseases are primarily transmitted through the contamination of soil with human faces containing parasite eggs. This study presents a novel deterministic mathematical model to comprehensively investigate the dynamics of helminth infection transmission through the soil. The mathematical model exhibits two equilibrium points: the diseases-free equilibrium point (DFE) and the endemic equilibrium point (EEP). The DFE is proven to be locally and globally asymptotically stable when the basic reproduction number is less than one, indicating the potential for disease eradication. Conversely, the EEP is locally asymptotically stable when the basic reproduction number exceeds unity, representing a persistent endemic state. To explore effective intervention strategies for controlling the spread of these infections, optimal control theory is applied. The study incorporates two time-varying control variables derived from sensitivity analysis: the rate of hygiene consciousness in the susceptible class and the rate of hygiene consciousness in the infectious class. Numerical simulations demonstrate that implementing optimal control strategies can successfully curb and mitigate soil-transmitted helminth infections. Overall, this research highlights the importance of proactive and targeted interventions, emphasizing the significance of hygiene education and awareness campaigns. By implementing optimal control measures based on the proposed strategies, the burden of soil-transmitted helminth diseases can be significantly reduced, improving public health in affected regions.