Industrial Mathematics

Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/94

Industrial Mathematics

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Semi analytical method for solving lymphatic filariasis epidemic model
    (African Journals Online (AJOL), 2019-03-08) F. A. Oguntolu; N. I. Akinwande; N. O. Olayiwola; F. A. Faruq
    In this paper, we present a deterministic model on the transmission dynamics of Lymphatic Filariasis. Non-Standard Finite Difference Method (NSFDM) is employed to attempt the solution of the model. The validity of the NSFDM in solving the model is established by using the computer in-built classical fourth-order Runge-Kutta method. The comparism between Non-Standard Finite Difference Method solution and Runge-Kutta (RK4) were performed which were found to be efficient, accurate and rapidly convergence.
  • Item
    Transmission dynamics of Monkeypox virus: a mathematical modelling approach
    (Springer Science and Business Media LLC, 2021-10-15) Olumuyiwa James Peter; Sumit Kumar; Nitu Kumari; Festus Abiodun Oguntolu; Kayode Oshinubi; Rabiu Musa
    Monkeypox (MPX), similar to both smallpox and cowpox, is caused by the monkeypox virus (MPXV). It occurs mostly in remote Central and West African communities, close to tropical rain forests. It is caused by the monkeypox virus in the Poxviridae family, which belongs to the genus Orthopoxvirus. We develop and analyse a deterministic mathematical model for the monkeypox virus. Both local and global asymptotic stability conditions for disease-free and endemic equilibria are determined. It is shown that the model undergo backward bifurcation, where the locally stable disease-free equilibrium co-exists with an endemic equilibrium. Furthermore, we determine conditions under which the disease-free equilibrium of the model is globally asymptotically stable. Finally, numerical simulations to demonstrate our findings and brief discussions are provided. The findings indicate that isolation of infected individuals in the human population helps to reduce disease transmission.