Mechanical Engineering
Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/152
Mechanical Engineering
Browse
6 results
Search Results
Item DESIGN AND CONSTRUCTION OF A SMALL SOLAR POWERED AIR BLOWER FOR CHARCOAL FIRED FURNACE(JOURNAL OF THE NIGERIAN INSTITUTION OF MECHANICAL ENGINEERS, 2019-09-30) Muhammad, .A. B.; Nasir, .A.; Ayo, .S. A.; Bori IgeIn Nigeria almost all the local foundry shops rely on the manually operated blowers for supplying air for the combustion of the charcoals to melt metals. This manually operated blower has showed that much man-hour is required during firing as one laborer is dedicated to driving the rotary blower. This is labourous and reduces the rate of productivity of the enterprise. Therefore, it is necessary to find easier ways of supplying the energy required for the combustion so as to increase productivity. A solar powered blower is designed and constructed in this work. The performances of manually operated and solar powered air blowers are compared. Performance results of the manually operated air blower showed that it takes about 67 minutes and 42 minutes to melt 4kg of aluminum and zinc respectively. On the other hand, for the solar-powered air blower, it takes about 30 minutes and 17 minutes to melt 4kg of aluminum and zinc respectively. This indicates that the solar-powered air blower takes a shorter time to melt metals when compared with the manually operated air blower. In addition, the solar powered air blower eliminates the laborious aspect of supplying energy for melting metals and also reduces the times spent in metal melting process.Item INVESTIGATION OF PRESSURE TRANSIENTS AND WAVE PROPAGATION EFFECTS IN A PRESSURIZED PETROLEUM PIPELINE USING WANDA TRANSIENT SOFTWARE(Nigeria Journal of Engineering Science and Technology Research (FUT Yola), 2019-05-04) Muhammad, .A. B.; Nasir, .A.; Ayo, .S. A.; Bori IgePressure transients and effects of wave propagations due to instantaneous valve closure in a pipeline transporting premium motor spirit (PMS) were investigated using simulation approach in this paper. Pressure transient investigation and analysis are often more significant than the steady state analysis that hydraulic Engineers usually use in pipeline design because almost all pipelines experience pressure transient in their operations. Pressure transient analysis helps to understand the additional loads a pipeline can be subjected to as a result of instantaneous valve closures. In this paper, WANDA Transient 4.5.1210 commercial software was used for the analysis of the pressure transients due to instant valve closure in a petroleum pipeline. Three different instantaneous valve closure times of 4.5, 9 and 18 seconds were used in this investigation. It was observed in this research that rise in pressure is highest (1304 kPa) at node F (the node where the valve closure takes place) against the inlet pressure of 120 kPa and also there is drastic drop in pressure (-53.7 kPa) at node B (a node just upstream end of the pump). Also cavitations were observed at Node B due to the development of negative pressure as a result of the valve closure. The research recommends that surge tank should be installed at node F to stabilize the pressure surge and also air vessels are to be installed at node B to curtail damages due to cavitations.Item Hydraulic Transient Analysis in Fluid Pipeline: A Review(JOURNAL OF SCIENCE TECHNOLOGY AND EDUCATION , ATBU, BAUCHI, 2019-12-19) Muhammad, .A. B.; Nasir, .A.; Ayo, .S. A.; Bori IgeHydraulic transient is an important phenomenon in the pipeline transportation system that have adverse and catastrophic effects on the most susceptible pipeline components such as valve, pumps, pipes as well as the environment. The major causes of hydraulic transients are sudden or abrupt valve closure or pump failures as a result of power outage. The major challenges of transient analysis techniques are to optimally achieve a balance between accuracy of results obtained from the analysis and simplicity of the adopted techniques in analyzing both complex and simple pipeline networks. In order to attain this fit many researchers have proposed, developed and used different models and algorithms to this regards. This paper surveys various transient analysis techniques, model and algorithm for protection of pipeline network system with a view of achieving optimal trade-off between transient analysis techniques used and the type of fluid flow pipeline analyzed. Performance and limitations of some of the previous works are identified. Finally, future investigations on petroleum and its products were recommended.Item Hydraulic Transient Analysis of a Petroleum Pipeline Transporting Dual Purpose Kerosene Using Modelling and Simulation Approach(Premier Journal of Engineering and Applied Sciences, 2020-04-21) Muhammad, .A. B.; Nasir, .A.; Ayo, .S. A.; Bori IgeHydraulic transient analysis of a pipeline transporting dual purpose kerosene (DPK) was carried out in this research using simulation approach. Many petroleum pump stations and pipelines experience leakages and failures at their nodes due to changes in flow parameters that lead to hydraulic transient. Such types of unsteady situations are encountered frequently in pipelines where the valves are suddenly closed. WANDA Transient 4.5.1210 commercial software was used for the analysis of hydraulic transient. Variation in pressures and discharges with respect to time after the closure of a gate valve at the downstream of a pipeline were observed. It was observed in the study that pressure at node F rise significantly up to about 1354 kPa against the initial inlet pressure of 120 kPa due to the instantaneous valve closure and it was also observed that pressure at node B drops to a negative pressure of -101 kPa and hence the formation of cavitations at that node B and pipe P2. The analysis showed that the magnitude of the pressure surge decreases as the valve closure is increased. The research recommended that surge tanks should be installed at node F to stabilize the pressure surge and also air vessels are to be installed at nodes B to curtail damages due to cavitations.Item Investigation of the Effects of Hydraulic Transient due to Instantaneous Valve Closure in a Petroleum Pipeline(NIPES Journal of Science and Technology Research, 2020-06-01) Muhammad, .A. B.; Nasir, .A.; Ayo, .S. A.; Bori IgePressure surge analysis of petroleum pipeline transporting automotive gas oil (AGO) also known as Diesel oil was carried out in this research work. Pressure transient analysis is often more significant than the steady state analysis that engineers usually use in pipeline design. Pressure transient analysis helps to understand the additional pressures the pipeline can be subjected to as a result of instantaneous rapid valve closures or pump failure. The fluid pressure and flow rate in the pipeline system may change significantly at some intervals of time due to the valve closure and such types of unsteady situations are encountered more often in pipelines where the valves are suddenly closed. In this paper, pressure surge due to instantaneous valve closure in a petroleum pipeline conveying AGO was studied in a virtual environment. WANDA Transient 4.5.1210 commercial software was used for the analysis of the pressure surge in the pipeline due to instantaneous valve closure time of 4.75s. It was observed in the study that pressure at some nodes rise significantly up to about 1400 kPa against the initial inlet pressure of 120 kPa due to the instantaneous valve closure and it drastically drops at some nodes to negative pressure of about -100 kPa and hence the formation of cavitations. The analysis showed that the magnitude of the pressure surge decreases as the valve closure is increased.Item EVALUATION OF RICE HUSK-GROUNDNUT SHELL BIOBRIQUETTE AS AN ALTERNATIVE FUEL FOR DOMESTIC COOKING IN NIGERIA(Journal of Inventive Engineering and Technology (JIET), 2022-02-26) Bori Ige; Muhammad, .A. B.; Maina, .M. B.; Iyodo, .H. M.This research work involves the evaluation of biomass briquettes produced from the blends of rice husk and groundnut shell as feed stocks and gum Arabic as a binder. Five briquettes of different compositions of groundnut shell/rice husk where produced and evaluated in this research. The moisture content, ash content, volatile matter, fixed carbon, compressive strength, afterglow time, flame propagation time, heating value and water boiling test were investigated to determine the physic-thermal properties of the briquettes produced. The results of the investigation showed that moisture content of the briquettes ranged from 3.96 – 5.63%, the heating value ranges from 130, 62.2 – 141, 62.56 kJ/kg, the compressive strength also ranges from 5.63-10.2 kN/m2, the range of ash content is 6.10 - 9.32 %, for fixed carbon is 7.67 - 20.2 %, the after afterglow time ranges from 238-271 sec and the range for water boiling test time is 10m, 34s – 13m, .22s. These values satisfactorily compares well with values obtained by other researchers in the literature. Therefore, the groundnut shell-rice husk briquettes are good alternative source of thermal energy for cooking. It is an economical and also an environmental friendly source of energy and waste disposal.