Industrial Mathematics
Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/188
Industrial Mathematics
Browse
Item Forecasting of COVID-19 pandemic in Nigeria using real statistical data(SCIK Publishing Corporation, 2021) Adesoye Idowu Abioye; Mfon David Umoh; Olumuyiwa James Peter; Helen Olaronke Edogbanya; Festus Abiodun Oguntolu; Oshinubi Kayode; Sylvanus AmadiegwuIn this paper, we used data released by Nigeria Center for Disease Control (NCDC) every 24 hours for the past consecutive two months to forecast the Coronavirus disease 2019 (COVID-19) cases for the months (September – October 2020). The linear regression forecasting model and R software package are used for the forecast and simulations respectively. The COVID-19 cases in Nigeria is on a decreasing trend and the forecast result show that in the next two months, there is going to be a decrease in new COVID-19 cases in Nigeria. COVID-19 in Nigeria can be drastically reduced if the organizations, management, government or policymakers are constantly proactive concerning these research findings.Item Modeling the impact of control strategies on malaria and COVID-19 coinfection: insights and implications for integrated public health interventions(Springer Science and Business Media LLC, 2023-12-27) Adesoye Idowu Abioye; Olumuyiwa James Peter; Emmanuel Addai; Festus Abiodun Oguntolu; Tawakalt Abosede AyoolaThis work discusses the challenge posed by the simultaneous occurrence of malaria and COVID-19 coinfection on global health systems. We propose a novel fractional order mathematical model malaria and COVID-19 coinfection. To assess the impact of control strategies on both diseases, we consider two control strategies which are, personal protection against mosquito bites ($$u_{1}(t)$$) and preventive measures for COVID-19 ($$u_{2}(t)$$). Numerical simulations demonstrate that consistent application of these measures leads to significant reductions in disease transmission. Using insecticide-treated nets and repellents during day and night effectively reduces malaria transmission, while implementing facial masks and hand hygiene controls COVID-19 spread. The most substantial impact is observed when both sets of protection measures are simultaneously adopted, highlighting the importance of integrated strategies. The study provides valuable insights into malaria and COVID-19 coinfection dynamics and emphasizes the impact of the control measures. of individual behavior and consistent adoption of personal protection measures to control both diseases. It underscores the need for integrated public health interventions to combat the dual burden of malaria and COVID-19, contributing to the development of targeted and efficient control measures.