Industrial Mathematics
Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/188
Industrial Mathematics
Browse
3 results
Search Results
Item Some New Results on a Free Boundary Value Problem Related to Auto Ignition of Combustible Fluid in Insulation Materials(International Conference on Mathematical Analysis and Optimization, 2019-03) R. O. Olayiwola; A. T. Cole; M. D. Shehu; F. A. Oguntolu; J. T. Fadepo; F. E. OkoosiAuto ignition of combustible fluids in insulation materials is one of the major problems facing the processing industries and many developing nations because it leads to serious environmental problem. This paper presents an analytical solutions to a free boundary value problem related to auto ignition of combustible fluids in insulation materials. The aim is to ascertain whether such a system is safe or if it will undergo ignition for a particular set of conditions. The conditions for this existence of unique solution of the model is established by actual solution method. The properties of solutions is examined. The analytical solution is obtained via polynomial approximation method, which show the influence of the parameters such as the Lewis numbers and Nusselt number are presented graphically and discussed.Item Analytical Simulation of Cholera Dynamics Controls(International Journal of Innovative Science, Engineering & Technology, 2015-03) F. A. Oguntolu; R. O. Olayiwola; O. A. Odebiyi; A. O. BelloIn this paper, an analytical simulation of cholera dynamics with control is presented. The model incorporates therapeutic treatment, water sanitation and Vaccination in curtailing the disease. We prove the existence and uniqueness of solution. The systems of equations were solved analytically using parameter-expanding method coupled with direct integration. The results are presented graphically and discussed. It shows clearly that improvement in treatment, water sanitation and Vaccination can eradicate cholera epidemic. It also observed that with proper combination of control measures the spread of cholera could be reduced.Item A Mathematical Study of HIV Transmission Dynamics with Counselling and Antiretroviral Therapy(International Journal of Scientific and Innovative Mathematical Research (IJSIMR), 2015-02) F. A. Oguntolu; R. O. Olayiwola; A. O. BelloIn this paper, a mathematical model of HIV transmission dynamics with counseling and Antiretroviral therapy (ART) as a major means of control of infection is presented. The existence and uniqueness of solutions of the model were examined by actual solution. The stability analysis of the critical points was conducted. The results show that it is globally asymptotically stable under certain conditions. The systems of equations were solved analytically using parameter-expanding method coupled with direct integration. The results are presently graphically and discussed. It is discovered that the parameters involved play a crucial role in the dynamics of the diseases which indicate that ART and counseling could be effective methods in the control and eradication of HIV.