Industrial Mathematics
Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/188
Industrial Mathematics
Browse
9 results
Search Results
Item Some New Results on a Free Boundary Value Problem Related to Auto Ignition of Combustible Fluid in Insulation Materials(International Conference on Mathematical Analysis and Optimization, 2019-03) R. O. Olayiwola; A. T. Cole; M. D. Shehu; F. A. Oguntolu; J. T. Fadepo; F. E. OkoosiAuto ignition of combustible fluids in insulation materials is one of the major problems facing the processing industries and many developing nations because it leads to serious environmental problem. This paper presents an analytical solutions to a free boundary value problem related to auto ignition of combustible fluids in insulation materials. The aim is to ascertain whether such a system is safe or if it will undergo ignition for a particular set of conditions. The conditions for this existence of unique solution of the model is established by actual solution method. The properties of solutions is examined. The analytical solution is obtained via polynomial approximation method, which show the influence of the parameters such as the Lewis numbers and Nusselt number are presented graphically and discussed.Item Derivation of the Reproduction Numbers for Cholera Model(Journal of the Nigerian Association of Mathematical Physcis (TNAMP), 2018-03) A. A. Ayoade; O. J. Peter; F. A. Oguntolu; C. Y. IsholaIt is expected of the epidemiologists to predict whether a disease will spread in a community or not and at the same time, forecast the degree of severity of the disease if it spreads in the community. By that, a cholera model is formulated and the procedure for obtaining the effective reproduction number and the basic reproduction number of the model is presented following the Next Generational MAtrix approach. The two reproduction numbers (the effective reproduction number and the basic reproduction number) are successfully derived. While the effective reproduction number can be used to predict the effectiveness of intervention strategies in inhibiting the spread of cholera disease, the basic reproduction number can be used to forecast the severity of cholera spread in a community where the intervention strategies are not on ground.Item Properties of Some Distributions Using Chebyshev’s Inequality Approach(Journal of Science, Technology, Mathematics and Education, 2014-08) K. Rauf; F. A. Oguntolu; A. Isah; U. Y. AbubakarIn this article, we give a simpler proof of Chebyshev inequality and use the result to obtain some properties of Binomial, Poisson and Geometric distributions. Furthermore, analysis of the results has shown that Chebyshev inequality is effective for determining convergence bound of the distributions. Some recent sharpened results are complemented.2010 Mathematics Subject Classification, 41A50.Item Application of System of Linear Equation to A 3-Arm Roundabout Network Flows(Journal of the Nigerian Association of Mathematical Physics, 2016-07) O. M. Adetutu; N. Nyor; O. A. Bello; F. A. OguntoluA mathematical model was presented and used to determine turning movements at roundabouts based on field data. Assumptions were made in order to simplify the model; such as U-turns from and to the same arm of a roundabout, total traffic into the roundabout is equal to the total traffic out of the roundabout and traffic is homogenous (i.e. mainly consisting of vehicles). Using Gaussian elimination, turning movements could be estimated from 3-arm roundabouts for the indeterminate traffic steam movements when inflows and outflows for each arm of the roundabout is known together with a flow stream on one internal circulating (weaving) section between any two arms of the roundabout. The model has practical use in reducing the number of detectors or counters (whether automatic, videoing technique or manual methods are in use) which are needed in collecting data to determine the estimated flows from and to the different parts of a roundabout. The reduction in the number of detectors (or traffic counts) could be due to site limitations caused by faulty or limited number of counters used, inaccessible sections for obtaining video images for later analysis (e.g. presence of sharp bends buildings or large trees obscuring vision). The benefits of saving costs could be significant in terms of time and man-power needed on site and this could depend on the amount of traffic flow through the roundabout.Item Analytical Simulation of Cholera Dynamics Controls(International Journal of Innovative Science, Engineering & Technology, 2015-03) F. A. Oguntolu; R. O. Olayiwola; O. A. Odebiyi; A. O. BelloIn this paper, an analytical simulation of cholera dynamics with control is presented. The model incorporates therapeutic treatment, water sanitation and Vaccination in curtailing the disease. We prove the existence and uniqueness of solution. The systems of equations were solved analytically using parameter-expanding method coupled with direct integration. The results are presented graphically and discussed. It shows clearly that improvement in treatment, water sanitation and Vaccination can eradicate cholera epidemic. It also observed that with proper combination of control measures the spread of cholera could be reduced.Item A Mathematical Study of HIV Transmission Dynamics with Counselling and Antiretroviral Therapy(International Journal of Scientific and Innovative Mathematical Research (IJSIMR), 2015-02) F. A. Oguntolu; R. O. Olayiwola; A. O. BelloIn this paper, a mathematical model of HIV transmission dynamics with counseling and Antiretroviral therapy (ART) as a major means of control of infection is presented. The existence and uniqueness of solutions of the model were examined by actual solution. The stability analysis of the critical points was conducted. The results show that it is globally asymptotically stable under certain conditions. The systems of equations were solved analytically using parameter-expanding method coupled with direct integration. The results are presently graphically and discussed. It is discovered that the parameters involved play a crucial role in the dynamics of the diseases which indicate that ART and counseling could be effective methods in the control and eradication of HIV.Item Mathematical model for the control of infectious disease(African Journals Online (AJOL), 2018-05-03) O. J. Peter; O. B. Akinduko; F. A. Oguntolu; C. Y. IsholaWe proposed a mathematical model of infectious disease dynamics. The model is a system of first order ordinary differential equations. The population is partitioned into three compartments of Susceptible S(t) , Infected I(t) and Recovered R(t). Two equilibria states exist: the disease-free equilibrium which is locally asymptotically stable if Ro < 1 and unstable if Ro > 1. Numerical simulation of the model shows that an increase in vaccination leads to low disease prevalence in a population.Item Differential Transform Method for Solving Mathematical Model of SEIR and SEI Spread of Malaria(International Journal of Sciences: Basic and Applied Research (IJSBAR), 2018-07-18) A. I. Abioye; M. O. Ibrahim; O. J. Peter; S. Amadiegwu; F. A. OguntoluIn this paper, we use Differential Transformation Method (DTM) to solve two dimensional mathematical model of malaria human variable and the other variable for mosquito. Next generation matrix method was used to solve for the basic reproduction number and we use it to test for the stability that whenever the disease-free equilibrium is globally asymptotically stable otherwise unstable. We also compare the DTM solution of the model with Fourth order Runge-Kutta method (R-K 4) which is embedded in maple 18 to see the behaviour of the parameters used in the model. The solutions of the two methods follow the same pattern which was found to be efficient and accurate.Item Semi-analytical solution for the mathematical modeling of yellow fever dynamics incorporating secondary host(Communication in Mathematical Modeling and Applications (CMMA), 2019-04-15) Samuel Abu Somma; Ninuola Ifeoluwa Akinwande; Roseline Toyin Abah; Festus Abiodun Oguntolu; Florence Dami AyegbusiIn this paper we use Differential Transformation Method (DTM) to solve the mathematical modeling of yellow fever dynamics incorporating secondary host. The DTM numerical solution was compared with the MAPLE RungeKutta 4-th order. The variable and parameter values used for analytical solution were estimated from the data obtained from World Health Organization (WHO) and UNICEF. The results obtained are in good agreement with Runge-Kutta. The solution was also presented graphically and gives better understanding of the model. The graphical solution showed that vaccination rate and recovery rate play a vital role in eradicating the yellow fever in a community.