Industrial Mathematics

Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/188

Industrial Mathematics

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Stability Analysis of Rotavirus Model with Co-infection and Control Measures
    (Journal of Science, Technology, Mathematics and Education, 2021-06) R. O. Olayiwola; F. A. Kuta; F. A. Oguntolu; O. N. Emuoyibofarhe; F. T. Olayiwola
    A mathematical model of the spread of rotavirus diarrhea based on a continuous time ordinary differential equation modeled two viral strains of influenza is presented. The existing influenza models is extended to include the case of co-infection when a single individual is infected with both strains of rotavirus and to explore the effects of maternal antibodies, vaccination and seasonality. The model exhibits two equilibria, disease-free equilibrium (DFE) and the endemic equilibrium (EE). Equilibrium analysis is conducted in the case with constant controls for both epidemic and endemic dynamics. By the use of Lyapunov function, it is shown that if the effective reproduction number, R0<1, the DFE is globally asymptotically stable and in such a case, the EE is unstable. Moreover, if R0 >1, the endemic equilibrium is globally asymptotically stable.
  • Item
    Modeling the impact of control strategies on malaria and COVID-19 coinfection: insights and implications for integrated public health interventions
    (Springer Science and Business Media LLC, 2023-12-27) Adesoye Idowu Abioye; Olumuyiwa James Peter; Emmanuel Addai; Festus Abiodun Oguntolu; Tawakalt Abosede Ayoola
    This work discusses the challenge posed by the simultaneous occurrence of malaria and COVID-19 coinfection on global health systems. We propose a novel fractional order mathematical model malaria and COVID-19 coinfection. To assess the impact of control strategies on both diseases, we consider two control strategies which are, personal protection against mosquito bites ($$u_{1}(t)$$) and preventive measures for COVID-19 ($$u_{2}(t)$$). Numerical simulations demonstrate that consistent application of these measures leads to significant reductions in disease transmission. Using insecticide-treated nets and repellents during day and night effectively reduces malaria transmission, while implementing facial masks and hand hygiene controls COVID-19 spread. The most substantial impact is observed when both sets of protection measures are simultaneously adopted, highlighting the importance of integrated strategies. The study provides valuable insights into malaria and COVID-19 coinfection dynamics and emphasizes the impact of the control measures. of individual behavior and consistent adoption of personal protection measures to control both diseases. It underscores the need for integrated public health interventions to combat the dual burden of malaria and COVID-19, contributing to the development of targeted and efficient control measures.