Mathematics
Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/201
Mathematics
Browse
2 results
Search Results
Item Approximate Solution of SIR Infectious Disease Model Using Homotopy Pertubation Method (HPM).(Pacific Journal of Science and Technology, 2013-11-20) Abubakar, Samuel; Akinwande, N. I.; Jimoh, O. R.; Oguntolu, F. A.; Ogwumu, O. D.In this paper we proposed a SIR model for general infectious disease dynamics. The analytical solution is obtained using the Homotopy Perturbation Method (HPM). We used the MATLAB computer software package to obtain the graphical profiles of the three compartments while varying some salient parameters. The analysis revealed that the efforts at eradication or reduction of disease prevalence must always match or even supersede the infection rate.Item Semi-Analytical Solution for the Mathematical Modeling of Yellow Fever Dynamics Incorporating Secondary Host(Communication in Mathematical Modeling and Applications, 2019-04-15) Somma, Samuel Abu; Akinwande, N. I.; Abah, R. T.,; Oguntolu, F. A.; Ayegbusi, F. D.In this paper we use Differential Transformation Method (DTM) to solve the mathematical modeling of yellow fever dynamics incorporating secondary host. The DTM numerical solution was compared with the MAPLE RungeKutta 4-th order. The variable and parameter values used for analytical solution were estimated from the data obtained from World Health Organization (WHO) and UNICEF. The results obtained are in good agreement with Runge-Kutta. The solution was also presented graphically and gives better understanding of the model. The graphical solution showed that vaccination rate and recovery rate play a vital role in eradicating the yellow fever in a community.