Mathematics
Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/201
Mathematics
Browse
11 results
Search Results
Item Application of Adomian Decomposition Method (ADM) for solving Mathematical Model of Measles(National Mathematical Center, 2021-03-22) Abdurrahman, Nurat Olamide; Somma S. A.; Ayegbusi F. D.; Gana P.; Adama P. W.; Yisa E. M.Item Formulation Of A Standard Runge- Kutta Type Method For The Solution First And Second Order Initial Value Problems(Researchjournali’s Journal of Mathematics, 2015-03) Muhammad R.; Y. A Yahaya; A.S AbdulkareemIn this paper, we present a standard Runge-Kutta Type Method (RKTM) for . The process produces Backward Differentiation Formula (BDF) scheme and its hybrid form which combined together to form a block method. The method is reformulated into a Runge-Kutta Type of the same step number for the solution of first and second order (special or general) initial value problem of Ordinary Differential Equation (ODE).Item A 4-STAGE RUNGE-KUTTA TYPE METHOD FOR SOLUTION OF STIFF ORDINARY DIFFERENTIAL EQUATIONS(Pan-American Journal of Mathematics, 2024) RAIHANATU MUHAMMAD; ABDULMALIK OYEDEJIIn this paper, a 2 step implicit block hybrid linear multistep method was reformulated into a 4-stage block hybrid Runge-Kutta Type Method via the butcher analysis. The method can be used to solve first order stiff ordinary differential equations. A numerical example solved with the proposed method showed a better result in comparison with an existing methodItem DERIVATION AND ANALYSIS OF BLOCK IMPLICIT HYBRID BACKWARD DIFFERENTIATION FORMULAE FOR STIFF PROBLEMS(Nigerian Journal of Mathematics and Applications, 2014) MUHAMMAD, R.; YAHAYA, Y. A.; IDRIS L.The Hybrid Backward Di erentiation Formula (HBDF) for the case k = 3 was reformulated into continuous form using the idea of multistep collocation. The continuous form was evaluated at some grid and o grid points which gave rise to discrete schemes employed as block methods for direct solution of rst order Ordinary Di erential Equation y0 = f(x; y). The requirement of a starting value and the overlap of solution model which are associated with conventional Linear Multistep Methods were eliminated by this approach. A convergence analysis of the derived hybrid schemes to establish their e ec- tiveness and reliability is presented. Numerical example carried out on sti problem further substantiates their performance.Item Approximate Solution of SIR Infectious Disease Model Using Homotopy Pertubation Method (HPM).(Pacific Journal of Science and Technology, 2013-11-20) Abubakar, Samuel; Akinwande, N. I.; Jimoh, O. R.; Oguntolu, F. A.; Ogwumu, O. D.In this paper we proposed a SIR model for general infectious disease dynamics. The analytical solution is obtained using the Homotopy Perturbation Method (HPM). We used the MATLAB computer software package to obtain the graphical profiles of the three compartments while varying some salient parameters. The analysis revealed that the efforts at eradication or reduction of disease prevalence must always match or even supersede the infection rate.Item Stability Analysis of Disease Free Equilibrium (DFE) State of a Mathematical Model of Yellow Fever Incorporating Secondary Host(Pacific Journal of Science and Technology, 2017-11-20) Somma, Samuel Abu; Akinwande, N. I.; Jiya, M.; Abdulrahaman, S.In this paper we formulate a mathematical model of yellow fever incorporating secondary host. We obtained the Disease Free Equilibrium (DFE) Points and compute the basic reproduction number. The local and global stability of the DFE was analyzed using Jacobian Matrix stability techniques and Lyapunov function respectively. The local and global stability was asymptotically stable if 1 0 R and 1 0 R , respectively. The basic reproduction number and control parameters of the model were presented graphically.Item Semi-Analytical Solution for the Mathematical Modeling of Yellow Fever Dynamics Incorporating Secondary Host(Communication in Mathematical Modeling and Applications, 2019-04-15) Somma, Samuel Abu; Akinwande, N. I.; Abah, R. T.,; Oguntolu, F. A.; Ayegbusi, F. D.In this paper we use Differential Transformation Method (DTM) to solve the mathematical modeling of yellow fever dynamics incorporating secondary host. The DTM numerical solution was compared with the MAPLE RungeKutta 4-th order. The variable and parameter values used for analytical solution were estimated from the data obtained from World Health Organization (WHO) and UNICEF. The results obtained are in good agreement with Runge-Kutta. The solution was also presented graphically and gives better understanding of the model. The graphical solution showed that vaccination rate and recovery rate play a vital role in eradicating the yellow fever in a community.Item Modelling the impacts of media campaign and double dose vaccination in controlling COVID-19 in Nigeria(Alexandria Engineering Journal, 2023-08-16) Akinwande, N. I.; Somma, Samuel Abu; Olayiwola, R. O.; Ashezua, T. T.; Gweryina, R. I.; Oguntolu, F. A.Corona virus disease (COVID-19) is a lethal disease that poses public health challenge in both developed and developing countries of the world. Owing to the recent ongoing clinical use of COVID-19 vaccines and noncompliance to COVID-19 health protocols, this study presents a deterministic model with an optimal control problem for assessing the community-level impact of media campaign and double-dose vaccination on the transmission and control of COVID-19. Detailed analysis of the model shows that, using the Lyapunov function theory and the theory of centre manifold, the dynamics of the model is determined essentially by the control reproduction number (𝑅𝑚𝑣). Consequently, the model undergoes the phenomenon of forward bifurcation in the absence of the double dose vaccination effects, where the global disease-free equilibrium is obtained whenever 𝑅𝑚𝑣 ≤ 1. Numerical simulations of the model using data relevant to the transmission dynamics of the disease in Nigeria, show that, certain values of the basic reproduction number ((𝑅0 ≥ 7)) may not prevent the spread of the pandemic even if 100% media compliance is achieved. Nevertheless, with assumed 75% (at 𝑅0 = 4)) media efficacy of double dose vaccination, the community herd immunity to the disease can be attained. Furthermore, Pontryagin’s maximum principle was used for the analysis of the optimized model by which necessary conditions for optimal controls were obtained. In addition, the optimal simulation results reveal that, for situations where the cost of implementing the controls (media campaign and double dose vaccination) considered in this study is low, allocating resources to media campaign-only strategy is more effective than allocating them to a firstdose vaccination strategy. More so, as expected, the combined media campaign-double dose vaccination strategy yields a higher population-level impact than the media campaign-only strategy, double-dose vaccination strategy or media campaign-first dose vaccination strategy.Item A 3-Person Non-Zero-Sum Game for Sachet Water Companies(Asian Research Journal of Mathematics, 2022-06-24) Nyor, N.; Muazu, M. I.; Somma Samuel AbuThe business of Sachet water (popularly called pure water) in Nigeria is often competitive due to the high demand for Sachet water by the populace. This is so because sachet water is the most affordable form of pure drinking water in Nigeria. As such, Sachet Water Firms that want to succeed in an ever increasing competitive market need to have the knowledge of Game Theory to identify which strategy will yield better profit independent of the strategy adopted by other competitors. This paper is aimed to investigate and determine the equilibrium point for three Sachet Water Firms using the Nash Equilibrium Method as it provides a systematic approach for deciding the best strategy in competitive situation. The result showed two Nash Equilibriums (promo, promo) and (stay-put, stay-put) with their respective payoffs of (82; 82; 82) and (147; 147; 147).Item Mathematical model of COVID-19 transmission dynamics incorporating booster vaccine program and environmental contamination(2022-12-10) Akinwande, N. I; Ashezua, T. T.; Gweryina, R. I.; Somma, Samuel Abu; Oguntolu, F. A.; A. UsmanCOVID-19 is one of the greatest human global health challenges that causes economic meltdown of many nations. In this study, we develop an SIR-type model which captures both human-to-human and environment-to-human-to-environment transmissions that allows the recruitment of corona viruses in the environment in the midst of booster vaccine program. Theoretically, we prove some basic properties of the full model as well as investigate the existence of SARS-CoV-2-free and endemic equilibria. The SARS-CoV-2-free equilibrium for the special case, where the constant inflow of corona virus into the environment by any other means, Ωis suspended (Ω =0)is globally asymptotically stable when the effective reproduction number 𝑅0𝑐<1and unstable if otherwise. Whereas in the presence of free-living Corona viruses in the environment (Ω >0), the endemic equilibrium using the centremanifold theory is shown to be stable globally whenever 𝑅0𝑐>1. The model is extended into optimal control system and analyzed analytically using Pontryagin’s Maximum Principle. Results from the optimal control simulations show that strategy E for implementing the public health advocacy, booster vaccine program, treatment of isolated people and disinfecting or fumigating of surfaces and dead bodies before burial is the most effective control intervention for mitigating the spread of Corona virus. Importantly, based on the available data used, the study also revealed that if at least 70%of the constituents followed the aforementioned public health policies, then herd immunity could be achieved for COVID-19 pandemic in the community.