Civil Engineering
Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/148
Civil Engineering
Browse
Item A Comparative Analysis of Grillage method and Beam line analysis of a reinforced concrete waffle bridge deck(Nigeria Journal of Engineering and Applied Sciences (NJEAS), 2022-01-12) 8. Adamu, H. N.; Abbass, B. A.; Abubakar, M.; Yusuf, A.; Kolo, D. N.; Shehu, M.The analysis of reinforced concrete waffle bridge deck using chanchaga bridge as a case study was carried out with the aid of computer program written in MATLAB. The bridge deck which is a beam bridge was idealized to be a waffle slab. A mathematical model of the bridge was developed using the method of grillages because very complex shapes of problem domain with prescribed conditions can be handled easily using the method. The bridge deck was modelled as interconnection of grid elements. The analysis was carried out using direct stiffness matrix method. The nodal displacements and the resulting static internal forces; shear forces, bending moments and twisting moments of each grid element were determined using the matrix. The results obtained using the method of grillages were then compared with beam line analysis and the former method gave a 10% decrease in forces which will result in the reduction of overall design and materials by 10%.Item Adamu Hawa(USEP: Journal of Science and Engineering Production, 2023) kOLO, S. S.; Adeleke, O. O; Yusuf, I. T.; Abdulrahman H. S; Shehu, M.Five settlements in Minna, Niger State capital were examined to determine drivers` attitudes and behaviours regarding usage of seatbelts. Multiple data Collection methods consisting of semi-structured interviews to create questionnaire for an in-person survey for 100 drivers each, for five different locations that was used. The questions explored why Minna drivers used or do not use seatbelts and what they think would be the best interventions to increase the rate of seatbelt usage in Minna by drivers. The outcome of all the aforementioned were translated into charts and following outcome was obtained. The composition of gender, for the respondent are 87% male and 13% female, showing that, out of this number 33% are married while 64% are unmarried and 3% are divorced. The finding also showed that the most prevalent age of driver is between age 36 to age 45 and it is said to be the productive age. It was also discovered that majority of the driver interviewed are Nigerlite constituting 64% of those interviewed. It was also noted that, a driver is 87% safer when seat belt is used as compared to not using seatbelt of 37% safe when accident or crash happen. It was therefore advised that sustained radio and television advertisement be done to encourage the use of seatbelt in Northern Nigeria.Item ANALYSIS OF ADSORPTION PERFORMANCE OF LATERITIC SOIL GEO-POLYMER COMPOSITE DEVELOPED AS A BARRIER IN A SANITARY LANDFILL(Nigerian Journal of Engineering Science and Technology Research, 2024-07-29) Asogwa E.O; Adie D.B; Ibrahim F.B; Amadi A.A; Mangey J.A; Sabo BItem ASSESSMENT OF PHYSICO-CHEMICAL CHARACTERISTICS OF LEACHATE CONTAMINATED LATERITIC SOIL(Nigerian Journal of Engineering Science and Technology Research, 2023-04-29) Asogwa E.O; Sabo B; Agbonselobho M.O; Agbese E.O; Haruna S.I; Mangey J.AThis research studied the physico-chemical characteristics of leachate contaminated soil. Leachate is known as an important source of environmental pollution, more especially groundwater, pollution due to the presence of organic and inorganic substances, including heavy metals. Leachate is a major problem for municipal solid waste landfills and causes significant threat to surface water and groundwater. Leachate is generated by excess rainwater passing through the waste body. The pollutants from the waste material are transferred to the percolating water by the combination of physical, chemical and microbial processes. Leachate is characterized as water-based solution of four groups of pollutants; dissolved organic matter, heavy metals, inorganic macro components, and xenobiotic organic compounds. The physio and bio-chemical analysis: BOD, COD, pH, EC, total hardness, nitrite, chloride, calcium and heavy metals such as Pb, Fe, Zn, and Cu were determined. From the results obtained, pH increases with increase in percentage contamination, from pH of 5 at 0% contamination to 5.62 at 100% contamination and cation exchange capacity also increased from an initial value of 187.613mg/lat 0% to 200.575mg/l at 100% contamination. These results show that the dumpsite has slight effects on the adjacent stream and underlying soil. Therefore, the implementation of a properly designed leachate collection system to prevent future risk of continuous contamination of the underlying soil and groundwater is important.Item ASSESSMENT OF THE PROPERTIES OF HIGH STRENGTH CONCRETE MADE USING QUARRY DUST AS FINE AGGREGATE(1st International Civil Engineering Conference (ICEC 2018), 2018-09-22) Mohammed T.A.; YUSUF, Abdulazeez; Abdullahi A.The study was carried out to assess the properties of High-strength concrete made using Quarry dust as Fine aggregate. Preliminary tests were carried out on the aggregates to determine their suitability for use in High- strength concrete. The aggregates were well graded and other properties met the requirements of aggregates to be used for High-strength concrete. Superplasticizer and Rice husk were used as chemical and mineral additives to improve the workability and other properties of the concrete. Based on the properties of the aggregates, a mix ratio of 0.23:0.51:0.044:1.05:0.7:0.2, representing cement: fine aggregate: coarse aggregate: superplasticizer: water: rice husk was used. Concrete cubes of 100x100x100 mm were cast, cured and the 28-day compressive strength determined. An average 28-day compressive strength of 63 N/mm2 was obtained. This can be categorized as class I high strength concrete and is applicable in the construction of high rise buildings. The Study therefore concludes that quarry dust can be used as total replacement for fine river sand in high strength concrete production.Item COMPARATIVE ANALYSIS OF TRAFFIC PERFORMANCE OF SMALL AND LARGE CENTRAL ISLAND ROTARIES IN MINNA, NIGERIA(SAVAP International, 2013) Abubakar, Mahmud; Ndoke, P. N.Of recent, the government of Niger state has embarked on the construction of roundabouts with small central island rotaries; this paper compares the performance of large central island rotaries with small central island rotaries. The performance of large central island rotaries compares well to the performance of small central island rotaries. Capacities of rotaries with small islands were found to be higher than capacities of large central island rotaries while the delay for large central island rotaries was found to be higher than that of small central island rotaries. However, both large and small central island rotaries were found to be operating at the same level of service. This study provides recommendations to traffic engineers and/or planners on the conditions under which both central island rotaries perform better and, thus, should be considered.Item Comparative Assessment of Macroscopic Traffic Flow Properties Estimation Methods: A Case for Moving Car Observer Method(ENGINEERING SCIENCE AND TECHNOLOGY INTERNATIONAL RESEARCH JOURNAL, 2017) Hassan Shuiabu Abdulrahman; A. A. Almusawi; Abubakar, MahmudDifferent methods of estimating macroscopic traffic properties is expected to have varying results even when they are carried out on the same road and during the same time interval. A comparative assessment was carried out between traffic data collected at a point and that collected over a short section; Moving car observer method(MCO). Student’s t-test was used to evaluate both data and it was observed that there was no significant difference between them. The MCO method correlates well with conventional data collection method and it can be used as a substitute for it, assuming conventional data collection method is trueItem ConcealedBeaminReinforcedConcreteStructures:APerformance-BasedAnalysis(NigerianJournalofScienceandEngineeringInfrastructure(NJSEI), 2024) Abubakar, Mahmud; Abdullahi, Hashim; Yabagi, Maikudi SaniThe use of hidden beams in reinforced concrete construction is seen as an effective method of reducing excessive deflection in large spans. However, despite its presumed advantages and growing usage, no mention of it in standard civil engineering literature, codes and standards. In this paper, performance-based analysis is carried out on three different cases of slab arrangement involving hidden beams using SAP2000. The process is performed under dead and live load combination and based on the design guidelines in BS8110. The result of the performance-based analysis shows a 4%, 2% and 11% decrease in deflection, stress distribution and area of bending steel reinforcement required for the case with hidden beam in comparison with the case without the hidden beam.This indicates that the presence of a hidden beam in a slab is significant. Thus, it is recommended for reducing excessive deflection in large spans, hidden beams can be introduced.Item Development of a Simplified Methodology for British DoE Concrete Mix Design Procedure using python(Nile Journal of Engineering & Applied Sciences, 2025) Aguwa, Chinedu; Abubakar, MahmudMost of the methods of concrete mix design developed over the years were geared towards manual approach. Apart from being characterized by rigorous complication in computation, manual concrete mix design is prone to errors and mistakes inherent in the calculation during interpolations and reading of charts. Thus, this research introduces an innovative integration of Python algorithms into mobile applications for concrete mix design. The tables used in this algorithm are the same as those used in the British Method, however, Charts or Figures in the British method were converted into linear and polynomial equations. Python program was written to ease the use of the algorithm and it was also configured into the backend of a mobile application for user-friendliness. The results obtained from the algorithm were compared with those obtained based on the British method manual calculations and available datasets. The percentage errors between the algorithm results and manual calculations were found to range from 0.65% to 3% across all examples. The developed algorithm is a reliable tool for automating DoE concrete mix design. It is recommended for engineers to enhance accuracy and efficiency in mix design computations.Item DEVELOPMENT OF AN ANDROID BASED MOBILE APPLICATION FOR THE DESIGN AND DETAILING OF ISOLATED PAD FOUNDATIONS ACCORDING TO EUROCODE 2(i-manager’s Journal on Mobile Applications & Technologies, 2019) Yusuf, Abdulazeez; Isiaka, I.; Abubakar, Mahmud; Aminulai, H. O.; Abdullahi, Aliyu; Alayande, T. A.In a building construction project, it is the responsibility of the structural engineer to come up with a complete design of all structural elements. When this is done manually it is tasking, time consuming, and produces errors with inconsistent results. However, the design can be done using computer software, but this also comes with some downside; it is expensive and complex to use. Thus, this research developed an android based mobile application for the design of pad foundations to Eurocode 2 to put these challenges in check when designing pad footings. The mobile application designs isolated Axially loaded-only and Axially loaded with bending pad footing to Eurocode 2 accurately, with consistent results and in a timely manner. The application was tested using typical test parameters and results are compared to the manual computations. There was no significant difference in the steel sections provided for both methods. All checks that must be satisfactory in design were all checked and found to be satisfactory.Item Development of an Android Based Mobile Application for Design and Detailing of Pad Foundations to BS8110(Epistemics in Science, Engineering and Technology, 2017) Yusuf, A.; Aminulai, H. O.; Abdullahi, A.; Abubakar, Mahmud; Alhaji, B.Many innovative computer software have been developed to perform the task of designing and detailing structural elements such as beams, columns, slabs and foundations. This design and detailing can be done using mobile devices but software developed to operate on such devices have not been fully developed. However, this research is aimed at developing an android based mobile application for the design of pad foundations to Bs8110. The mobile application developed designs isolated axially loaded-only; axially loaded with moment pad footings as well as combined pad footings. The mobile application developed was tested using three typical test parameters and results compared to the manual computations. There was no significant variation in the steel sections required and provided for the manual design and that generated by the mobile application. The steel required by manual design for the axially loaded pad footing was 835mm2/m and that generated by the application was 837.2mm2/m. That of the axially loaded with moment gave required steel section as 1019mm2/m using manual design. This android based mobile application would thus give the structural engineer the leverage to design pad footings anywhere and anytime.Item Development of an Android Based Mobile Application for Design and Detailing of Pad Foundations to BS8110(Epistemics in Science, Engineering and Technology, 2017-12-10) YUSUF, Abdulazeez; H. O. Aminulai; A. Abdullahi; M. Abubakar; B. AlhajiMany innovative computer software have been developed to perform the task of designing and detailing structural elements such as beams, columns, slabs and foundations. This design and detailing can be done using mobile devices but software developed to operate on such devices have not been fully developed. However, this research is aimed at developing an android based mobile application for the design of pad foundations to Bs8110. The mobile application developed designs isolated axially loaded-only; axially loaded with moment pad footings as well as combined pad footings. The mobile application developed was tested using three typical test parameters and results compared to the manual computations. There was no significant variation in the steel sections required and provided for the manual design and that generated by the mobile application. The steel required by manual design for the axially loaded pad footing was 835mm2/m and that generated by the application was 837.2mm2/m. That of the axially loaded with moment gave required steel section as 1019mm2/m using manual design. This android based mobile application would thus give the structural engineer the leverage to design pad footings anywhere and anytimeItem Development of Sensitivity based Model for Flexural Failure of Singly Reinforced Concrete Slabs Based on BS 8110: 1997(. Nigeria Journal of Engineering and Applied Sciences (NJEAS), 2017-03-22) Tsado, T.Y.,; Sadiku, S.,; Iorkar, A.; Kolo, D. N.This research presents mathematical models for checking the effect of variation in key designed parameters on the structural collapse of singly reinforced concrete solid slabs in buildings due to flexural failure based on British Standard (BS) 8110, 1997. The increasing complexity of construction process requires very high level of engineering and management skills to combat the structural collapses widely experienced globally. Most of the collapses were adjudged to be due to improper management arising from variations in structural key design parameters during construction, and this call for mathematical models to check the effect of variation in key design parameters on the structural collapse. The key design parameters considered in this research are; characteristic strength of reinforcement, grade of concrete, diameter and spacing of tension reinforcement, effective depth of tension reinforcement, applied moment. Sensitivity analysis was applied to study the effect of variation in the key parameters on the moment capacity. The results of sensitivity analysis were utilized in regression analysis to develop simplified equations for estimating the moment capacity of the slab. Computer programme was developed based on BS 8110, 1997 standard using Java to verify the model. Flexure safety factor was also checked based on BS 8110, 1997 requirements. Forty five numerical examples were taken to validate the model with the developed computer programme at 5% significance level using Chi-squared as an instrument for sensitivity-based model for flexural failure of singly reinforced concrete slab. The results show that the model is adequate at 5% significance level for checking flexural failure of singly reinforced concrete slab at construction stage based on BS 8110, 1997. It was recommended that the construction practitioners should consider the diverse effect of change in key deigned parameters during construction, otherwise the developed model should be strictly considered for quick safety check especially deflection safety of a solid slab during construction.Item Development of Statistical Model For Predicting Flexible Pavement Deterioration Due To Traffic Loading(USEP: Journal of Research Information in Civil Engineering, 2024) Adamu, H. N.Flexible pavements are critical transportation components but are highly susceptible to deterioration caused by traffic loading, pavement conditions, and environmental factors. This study develops a predictive model to estimate pothole deterioration rates using traffic count and pavement structural strength. Data were collected from the Talba-Mandela road in Minna, Niger State Nigeria, over 14 weeks including weekly measurements of pothole volume, traffic counts and pavement structural numbers. A multiple linear regression model was calibrated, achieving a 𝑅² of 80.8%. Validation indicated less than 10% deviation between observed and predicted data. These findings provide a data-driven approach to optimizing pavement maintenance schedules, reducing costs, and improving road durability.Item Development of Statistical Models to predict the compressive strength of concrete produced using Quarry dust as partial replacement of fine aggregate(LAUTECH Journal of Civil and Environmental Studies, 2022-01-12) Kolo, D. N.; Enwongulu, J. O.Concrete is an assemblage of Cement, aggregates and water. The most frequently used fine aggregate for concrete production is sand sourced from river banks. The continuous use of this river sand as a result of rapid infrastructural development has resulted in its scarcity and often high cost. This paper examines the suitability of using quarry dust (QD) as partial replacement for fine aggregate in concrete production. Preliminary test (specific gravity) was conducted on the aggregates to determine their suitability for concrete production. Concrete with 5, 10, 15, 20 and 25% QD – Fine aggregate content was cast with a mix ratio of 1:2:4. The freshly prepared Quarry Dust Concrete (QDC) was cast in moulds measuring 150 x 150 x 150mm and cured using ponding method. The Compressive strength result shows that replacement of fine aggregate with QD leads to a general increase in compressive strength of concrete. Statistical package for the Social Sciences (SPSS) version 21 was utilised to develop the linear regression models for the 7 and 28 days compressive strength of the QDC. The developed models were found to be sufficient in predicting the 7 and 28 days compressive strengths with R2 values of 98.9% and 95.2 % respectively.Item Durability Characteristics of Lateritic Subgrade Treated with Iron Ore Tailings and Lime Exposed to Moisture Fluctuations(. Nigeria Journal of Engineering and Applied Sciences (NJEAS), 2018-02-11) Mohammed, A. M.; Amadi, A. A.; Aguwa, J. I.; Kolo, D. N.This research evaluated the durability of lateritic subgrade treated with Iron Ore Tailings (IOT) and lime exposed to moisture variations. Representative sample of the subgrade was treated with 0, 5, 10, 15, and 20% IOT and optimal lime percent (6.2%) determined through Eades and Grim pH test. Preliminary tests such as particles size distribution, Atterberg limits and compaction were conducted to characterize the mixtures while Unconfined Compressive Strength (UCS) and CBR-swell tests were carried out to access durability of the soil mixtures. Addition of lime to the soil increased the liquid limit to 45% from 36% obtained in natural soil. Similarly, the plastic limit of the lime-treated sample increased from 16 to 26% with reduced plasticity index. While the natural soil exhibited CBR of 3 and 75% for soaked and unsoaked specimens respectively, the value increased and peaked at 11 and 118% with addition of lime and 15% IOT. Durability of the soil improved with addition of IOT and lime. 15% IOT and lime treated soil recorded the best results with UCS of 240 kN/m2 and 200% Relative Volumetric Stability (RVS), which is a measure of strength loss of a soil. Similarly, swell value of 0% was recorded when the lime-IOT samples were subjected to CBR-Swell test. This shows that the lime-IOT treated samples are less vulnerable to moisture condition normally prevalent in the pavement subgrades.Item EFFECT OF CHEMICAL FERTILIZERS ON GROUNDWATER QUALITY IN AN UNCONFINED AQUIFER(ARID ZONE JOURNAL OF ENGINEERING, TECHNOLOGY & ENVIRONMENT, 2023-01-14) Asogwa E.O; Adesiji A.R; Jimoh O.D; Adeoye P.A; Odofin A.J; Mangey J.A; Odekunle O.MThe use of fertilizer on soil to improve agricultural yield has been practiced for years. While fertilizers and manures greatly improve crop yield, it is also important to consider their corresponding and devastating effects. In this study, the fertilizers application rate was varied and their effects on groundwater quality with soil depths of 30 cm and 60 cm were observed. Two fabricated lysimeters were used to collect soil samples undisturbed and taken to the laboratory for analyses. The samples in the lysimeters were made saturated and varying quantities of fertilizers from 87.37 g, 100 g. and 120 g were applied. The saturation of the samples was done through an improvised rainfall simulator which was set up in such a way that a constant discharge was adopted. Water samples were collected at 30 cm and 60 cm depths and analyzed for fertilizer residues and physico-chemical characteristics such as temperature, pH, total chloride, total dissolved solids, dissolved oxygen, conductivity, free ammonia, total phosphate, urea, zinc and iron were also analysed. The results showed that the more the quantities of fertilizers applied on the soil, the more it affects the physico-chemical properties of the water and renders it toxic and unsuitable for drinking purposes except treated. The results, however revealed that the concentrations of the fertilizers in the groundwater decreases with soil depths. It is therefore recommended that any groundwater being explored for domestic use close to soil surface in areas prone to fertilizer pollution should be well treated before consumption, most especially for people using shallow wells.Item Effect of Partial Replacement of Fine Aggregate with Sawdust in Light Weight Concrete Production Using Bida Natural Stone as Coarse Aggregate(Proceedings of the 3rd International Engineering Conference, Federal University of Technology Minna, Nigeria, 2019) Alhaji, B.; Abubakar, M.; Yusuf, A.; Oritola, S. F.; Mohammed, S.; Kolo D. N.This study investigated the effect of sawdust as partial replacement for Fine Aggregate in light weight concrete production. Sawdust was used to replace Fine Aggregate from 0% to 40% in steps of 5%. 150 x 150 x 150mm concrete cubes were cast for each replacement level, the concrete was cured and the compressive strengths were determined at 7, 21 and 28days curing period respectively. Increase in percentage of sawdust in concrete stant reduction in the compressive strength values with a corresponding reduction in weight. From the result obtained, 5% replacement of Fine Aggregate with sawdust gave a maximum compressive strength 13.11 N/mm2. It was however concluded that the optimum replacement level of 5% can be used as plain concrete for blinding works.Item Empirical Relationship between Compressive, Flexural and Splitting Tensile Strengths of Concrete Containing Kuta Gravel as Coarse Aggregate(Journal of Engineering Research and Reports, 2025-02-02) Abubakar, J.; Abdullahi, M.; Aguwa, J. I.; Abbas, B. A.; Kolo, D. N.Flexural and tensile strengths of concrete are of great importance in structural engineering. Understanding the flexural strength of concrete helps designers prevent and control development of cracks in concrete elements, ensuring durability. In addition to serviceability, shear, bond failure and flexural capacity in concrete members are directly linked to the tensile strength of the concrete. When compared to flexural and tensile strengths, determination of the compressive strength of concrete is easier to carry out in the field. It is therefore, customary to determine the compressive strength and correlate it to other strength properties. In this study, empirical relationships have been developed to relate the compressive strength to the flexural and splitting tensile strengths of concrete using Kuta river gravel as coarse aggregate. Using varying total aggregate to cement, coarse aggregate to total aggregate and water to cement ratios, 20 mixes were generated using Central Composite Design (CCD) in Minitab 21. The compressive, flexural and splitting tensile strengths of concrete samples from these mixes were determined at 28 days of age. From the strength data obtained, regression equations were developed that relate the strength properties with the aid of regression analysis tool in Microsoft Excel. The empirical models developed to predict the flexural and splitting tensile strengths of concrete from the compressive strength recorded R2 values of 1 for both models, P-values of 5.23 × 10−29 and 4.47 × 10−30, and standard errors of 0.21 and 0.06 respectively. Furthermore, residuals from the values of predicted strength properties show that there is very slight deviation between the experimental and predicted values. It was concluded that the empirical equations developed are significant, have high predictive capabilities and can be used in predicting the flexural and splitting tensile strengths of concrete.Item Environmental Effects of Road Construction Waste(USEP: Journal of Research Information in Civil Engineering, 2023) S. S. Kolo; H. S. Abdulrahman; D. N. Kolo; M. Shehu; H.N AdamuThis research work investigates the various waste streams generated during road construction and their effect on environment. The method employed in this research work is categorized into waste type generated on construction site using reconnaissance surveys, data collection and data analysis methods. Four construction project sites in Minna, Nigeria, were used with the aim that these sites will provide a platform to acquire valuable data. It was discovered that mortar or concrete waste and wood waste has the highest percentage of 22% to 39% and asphalt has about 4 % waste and this was largest percentage of waste generated and this was mainly due to the human error, the use of inadequately trained and unskilled labour. The study however made case for adequate attention and concentration towards improving effective waste management by implementing proper waste management and disposal systems and encouraging the use of recycled materials in road construction. This will greatly reduce the cost of construction, increase efficiency, reduce work time and replenish the earths rapidly depleting natural resources used in construction like wood and bitumen.
- «
- 1 (current)
- 2
- 3
- »