Mathematics

Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/100

Mathematics

Browse

Search Results

Now showing 1 - 10 of 10
  • Item
    SENSITIVITY ANALYSIS FOR THE MATHEMATICAL MODELING OF MEASLES DISEASE INCORPORATING TEMPORARY PASSIVE IMMUNITY
    (1st SPS Biennial International Conference Federal University of Technology, Minna, Nigeria, 2017-05-05) Somma, Samuel Abu; Akinwande, N. I.
    Measles is an airborne disease which spreads easily through the coughs and sneezes of those infected. Measles antibodies are transferred from mothers who have been vaccinated against measles or have been previously infected with measles to their newborn children. These antibodies are transferred in low amounts and usually last six months or less. In this paper a mathematical model of measles disease was formulated incorporating temporary passive immunity. There exist two equilibria in the model; Disease Free Equilibrium (DFE) and Endemic Equilibrium (EE). The Disease Free Equilibrium (DFE) state was analyzed for local and global stability. The Basic Reproduction Number 0 R was computed and used to carried out the sensitivity analysis with some parameters of the mode. The analysis shows that as contact rate  increases the 0 as the vaccination rate v increases the 0 R decreases. Sensitive parameters with the R R 0 increases and were presented graphically. The disease will die out of the population if the attention is given to high level immunization.
  • Item
    Mathematical Modelling for the Effect of Malaria on the Heterozygous and Homozygous Genes
    (6th International Conference on Mathematical Analysis and Optimization: Theory and Applications (ICAPTA 2019), 2019-03-29) Abdurrahman, N. O.; Akinwande, N. I.; Somma, Samuel Abu
    This paper models the effect of malaria on the homozygous for the normal gene (AA), heterozygous for sickle cell gene (AS) and homozygous for sickle cell gene (SS) using the first order ordinary differential equation. The Diseases Free Equilibrium (DFE) was obtained and used to compute the basic reproduction Number Ro. The local stability of the (DFE) was analyzed.
  • Item
    Differential Transformation Method (DTM) for Solving Mathematical Modelling of Monkey Pox Virus Incorporating Quarantine
    (Proceedings of 2nd SPS Biennial International Conference Federal University of Technology, Minna, Nigeria, 2019-06-26) Somma, Samuel Abu; Akinwande, N. I.; Abdurrahman, N. O.; Zhiri, A. B.
    In this paper the Mathematical Modelling of Monkey Pox Virus Incorporating Quarantine was solved semi-analytically using Differential Transformation Method (DTM). The solutions of difference cases were presented graphically. The graphical solutions gave better understanding of the dynamics of Monkey pox virus, it was shown that effective Public Enlightenment Campaign and Progression Rate of Quarantine are important parameters that will prevent and control the spread of Monkey Pox in the population.
  • Item
    Local and Global Stability Analysis of a Mathematical Model of Measles Incorporating Maternally-Derived-Immunity
    (Proceedings of International Conference on Applied Mathematics & Computational Sciences (ICAMCS),, 2019-10-19) Somma, Samuel Abu; Akinwande, N. I.; Gana, P.
    In this paper, the local stabilities of both the Disease Free Equilibrium (DFE) and Endemic Equilibrium (EE) were analyzed using the Jacobian matrix stability technique. The global stabilities were analyzed using Lyapunov function. The analysis shows that the DFE is locally and globally stable if the basic reproduction number R 0  1 R 0  1 and R 0  1 respectively. The EE is also locally and globally stable if . Vaccination and recovery rates have been shown from the graphical presentation as the important parameter that will eradicate measles from the population.
  • Item
    Population dynamics of a mathematical model for Campylobacteriosis
    (Proceedings of International Conference on Mathematical Modelling Optimization and Analysis of Disease Dynamics (ICMMOADD), 2024-02-22) Ashezua, T. T.; Salemkaan, M. T.; Somma, Samuel Abu
    The bacterium campylobacter is the cause of campylobacteriosis, a major cause of foodborne illness that goes by the most common name for diarrheal illnesses. This paper develops and analyzes a new mathematical model for campylobacteriosis. It is demonstrated that in cases where the corresponding reproduction number is smaller than unity, the model's disease-free equilibrium is both locally and globally stable. The numerical simulation results indicate that increasing the treatment rate for both symptomatic and asymptomatic disease-infected individuals resulted in a decrease in the number of asymptomatic and symptomatic individuals, respectively, and a rise in the population's number of recovered individuals.
  • Item
    Homotopy Perturbation Analysis of the Spread and Control of Lassa Fever
    (Proceedings of International Conference on Mathematical Modelling Optimization and Analysis of Disease Dynamics (ICMMOADD), 2024-02-22) Tsado, D.; Oguntolu, F. A.; Somma, Samuel Abu
    Lassa fever, a viral infection transmitted by rodents, has emerged as a significant global health concern in recent times. It continues to garner significant attention daily basis owing to its rapid transmission and deadly nature. In this study, the Homotopy Perturbation Analysis was conducted to examine the spread and control of Lassa fever. The human population was categorized into susceptible, exposed, infected, and recovered compartments, while the rodent population was divided into susceptible and infected recovered compartments. By applying the Homotopy Perturbation Analysis to the nonlinear differential equations associated with these compartments, we were able to obtain the analytical solution for the spread and control of Lassa fever. The nonlinear differential equations were integrated into the Homotopy Perturbation framework and solved to form a power series solution. Finally, the final approximate solutions were obtained and simulation results were generated from the general solution graphically.
  • Item
    Local Stability Analysis of a Tuberculosis Model incorporating Extensive Drug Resistant Subgroup
    (Pacific Journal of Science and Technology, 2017-05-25) Eguda, F. Y.; Akinwande, N. I.; Abdulrahman, S.; Kuta, F. A.; Somma, Samuel Abu
    This paper proposes a mathematical model for the transmission dynamics of Tuberculosis incorporating extensive drug resistant subgroup. The effective reproduction number c R was obtained and conditions for local stability of the disease free equilibrium and endemic equilibrium states were established. Numerical simulations confirmed the stability analysis and further revealed that unless proper measures are taken against typical TB, progression to XDR-TB, mortality and morbidity of infected individuals shall continue to rise.
  • Item
    Local Stability Analysis of a River Blindness Disease Model with Control
    (Pacific Journal of Science and Technology., 2018-05-12) Oguntolu, F. A.; Bolarin, G. A.; Somma, Samuel Abu; Bello, A. O.
    In this paper, a mathematical model to study the dynamics of River Blindness is presented. The existence and uniqueness of solutions of the model were examined by actual solution. The effective reproduction number was obtained using the next generation matrix. The Disease Free Equilibrium (DFE) State was obtained and analysed for stability. It was found that, the DFE State is Locally Asymptotically Stable (LAS) if the effective unstable if reproduction number R 0  1 .
  • Item
    Mathematical Modeling of Algae Population Dynamics on the Surface of Water
    (2019-11-12) Abdurrahman, O. N.; Akinwande, N. I.; Somma, Samuel Abu
    The paper presented an analytical solution of the exponential growth model of algae population dynamics on the water surface. The Computer Symbolic Algebraic Package, MAPLE is used to simulate the graphical profiles of the population with time while varying the parameters, such as diffusion and rate of change of algae density, governing the subsistence or extinction of the water organisms.
  • Item
    Modelling the Impacts of Media Campaign and Double Dose Vaccination in Controlling COVID-19 in Nigeria.
    (Alexandria Engineering Journal, 2023-02-21) Akinwande, N. I.; Somma, Samuel Abu; Olayiwola, R. O.; Ashezua, T. T.; Gweryina, R. I.; Oguntolu, F. A.; Abdurahman, O. N.
    Corona virus disease (COVID-19) is a lethal disease that poses public health challenge in both developed and developing countries of the world. Owing to the recent ongoing clinical use of COVID-19 vaccines and noncompliance to COVID-19 health protocols, this study presents a deterministic model with an optimal control problem for assessing the community-level impact of media campaign and double-dose vaccination on the transmission and control of COVID-19. Detailed analysis of the model shows that, using the Lyapunov function theory and the theory of centre manifold, the dynamics of the model is determined essentially by the control reproduction number (𝑅𝑚𝑣). Consequently, the model undergoes the phenomenon of forward bifurcation in the absence of the double dose vaccination effects, where the global disease-free equilibrium is obtained whenever 𝑅𝑚𝑣 ≤ 1. Numerical simulations of the model using data relevant to the transmission dynamics of the disease in Nigeria, show that, certain values of the basic reproduction number ((𝑅0 ≥ 7)) may not prevent the spread of the pandemic even if 100% media compliance is achieved. Nevertheless, with assumed 75% (at 𝑅0 = 4)) media efficacy of double dose vaccination, the community herd immunity to the disease can be attained. Furthermore, Pontryagin’s maximum principle was used for the analysis of the optimized model by which necessary conditions for optimal controls were obtained. In addition, the optimal simulation results reveal that, for situations where the cost of implementing the controls (media campaign and double dose vaccination) considered in this study is low, allocating resources to media campaign-only strategy is more effective than allocating them to a firstdose vaccination strategy. More so, as expected, the combined media campaign-double dose vaccination strategy yields a higher population-level impact than the media campaign-only strategy, double-dose vaccination strategy or media campaign-first dose vaccination strategy.