Mathematics
Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/100
Mathematics
Browse
3 results
Search Results
Item An Appraisal on the Application of Reproduction Number for the Stability Analysis of Disease - Free Equilibrium State for S-I-R Type Models(Proceedings of International Conference on Mathematical Modelling Optimization and Analysis of Disease Dynamics (ICMMOADD) 2024, 2024-02-28) Abdurrahman, Nurat Olamide; Somma S. A.; Akinwande, N. I.; Ashezua, T. T.; Gweryina, R.One of the key ideas in mathematical biology is the basic reproduction number, which can be utilized to comprehend how a disease epidemic profile might evolve in the future. The basic reproduction number, represented by R0 , is the anticipated number of secondary cases that a typical infectious individual would cause in a population that is fully susceptible. This threshold parameter is highly valuable in characterizing mathematical problems related to infectious diseases. If R0 < 1, this suggests that, on average, during the infectious period, an infected individual produces less than one new infected individual, suggesting that the infection may eventually be eradicated from the population. On the other hand, if R0 < 1, every infected person develops an average of multiple new infections, it suggests that the disease may continue to spread throughout the population. We discuss the Reproduction number in this work and provide some examples, both for straightforward and complicated situations.Item A MATHEMATICAL MODEL OF SCABBY MOUTH DISEASE INCORPORATING THE QUARANTINE CLASS.(39th Annual Conference of the Nigerian Mathematical Society, (NMS), 2021-04-23) Abdurrahman, Nurat Olamide; Somma S. A.; Aboyeji Folawe Ibironke; Akinwande Ninuola IfeoluwaWe propose a mathematical model to study the transmission and control of scabby mouth disease in sheep, incorporating the vaccinated and quarantine classes. The Disease-free equilibrium was obtained, and the reproduction number was also computed. The local stability of DFE was analyzed for stability. Sensitivity analysis of the basic reproduction number with respect to some parameters of the model was carried out, and the sensitive parameters withR_0 are presented graphically. The local stability of DFE is stable if R_0<1. The sensitivity analysis shows that the contact rateα is the most sensitive parameter to increase the spread of the disease, and vaccination rate ω is the highest sensitive parameter to control the transmission of scabby.Item Sensitivity Analysis for the Mathematical Modeling Transmission and Control of Rabies Incorporating Vaccination Class(40th Annual Conference of the Nigerian Mathematical Society (NMS), 2021-05) Abdurrahman, Nurat Olamide; Somma S. A.; Balogun R. T.In this paper, the Disease Free Equilibrium (DFE) of the model was obtained. The Basic Reproduction Number R0 was also computed and used to carry out the sensitivity analysis. The analysis revealed the sensitive parameters for the spread and control of Rabies. It was also shown that the contact rate of dogs and the vaccination rate of dogs are the most sensitive parameters to increase and decrease the transmission of rabies. The reproduction number was presented graphically against the sensitive parameters.