Mathematics
Permanent URI for this collectionhttp://197.211.34.35:4000/handle/123456789/100
Mathematics
Browse
10 results
Search Results
Item A MATHEMATICAL MODEL OF YELLOW FEVER DISEASE DYNAMICS INCORPORATING SPECIAL SATURATION INTERACTIONS FUNCTIONS(1st SPS Biennial International Conference Federal University of Technology, Minna, Nigeria, 2017-05-05) Akinwande, N. I.; Abdulrahman, S.; Ashezua, T. T.; Somma, Samuel AbuWe proposed an Mathematical Model of Yellow Fever Disease Dynamics Incorporating Special Saturation Process functions, obtained the equilibrium states of the model equations and analyzed same for stability. Conditions for the elimination of the disease in the population are obtained as constraint inequalities on the parameters using the basic reproduction number 0 R demographic and epidemiological data. . Graphical simulations are presented using someItem SENSITIVITY ANALYSIS FOR THE MATHEMATICAL MODELING OF MEASLES DISEASE INCORPORATING TEMPORARY PASSIVE IMMUNITY(1st SPS Biennial International Conference Federal University of Technology, Minna, Nigeria, 2017-05-05) Somma, Samuel Abu; Akinwande, N. I.Measles is an airborne disease which spreads easily through the coughs and sneezes of those infected. Measles antibodies are transferred from mothers who have been vaccinated against measles or have been previously infected with measles to their newborn children. These antibodies are transferred in low amounts and usually last six months or less. In this paper a mathematical model of measles disease was formulated incorporating temporary passive immunity. There exist two equilibria in the model; Disease Free Equilibrium (DFE) and Endemic Equilibrium (EE). The Disease Free Equilibrium (DFE) state was analyzed for local and global stability. The Basic Reproduction Number 0 R was computed and used to carried out the sensitivity analysis with some parameters of the mode. The analysis shows that as contact rate increases the 0 as the vaccination rate v increases the 0 R decreases. Sensitive parameters with the R R 0 increases and were presented graphically. The disease will die out of the population if the attention is given to high level immunization.Item Mathematical Modelling for the Effect of Malaria on the Heterozygous and Homozygous Genes(6th International Conference on Mathematical Analysis and Optimization: Theory and Applications (ICAPTA 2019), 2019-03-29) Abdurrahman, N. O.; Akinwande, N. I.; Somma, Samuel AbuThis paper models the effect of malaria on the homozygous for the normal gene (AA), heterozygous for sickle cell gene (AS) and homozygous for sickle cell gene (SS) using the first order ordinary differential equation. The Diseases Free Equilibrium (DFE) was obtained and used to compute the basic reproduction Number Ro. The local stability of the (DFE) was analyzed.Item Differential Transformation Method (DTM) for Solving Mathematical Modelling of Monkey Pox Virus Incorporating Quarantine(Proceedings of 2nd SPS Biennial International Conference Federal University of Technology, Minna, Nigeria, 2019-06-26) Somma, Samuel Abu; Akinwande, N. I.; Abdurrahman, N. O.; Zhiri, A. B.In this paper the Mathematical Modelling of Monkey Pox Virus Incorporating Quarantine was solved semi-analytically using Differential Transformation Method (DTM). The solutions of difference cases were presented graphically. The graphical solutions gave better understanding of the dynamics of Monkey pox virus, it was shown that effective Public Enlightenment Campaign and Progression Rate of Quarantine are important parameters that will prevent and control the spread of Monkey Pox in the population.Item Local and Global Stability Analysis of a Mathematical Model of Measles Incorporating Maternally-Derived-Immunity(Proceedings of International Conference on Applied Mathematics & Computational Sciences (ICAMCS),, 2019-10-19) Somma, Samuel Abu; Akinwande, N. I.; Gana, P.In this paper, the local stabilities of both the Disease Free Equilibrium (DFE) and Endemic Equilibrium (EE) were analyzed using the Jacobian matrix stability technique. The global stabilities were analyzed using Lyapunov function. The analysis shows that the DFE is locally and globally stable if the basic reproduction number R 0 1 R 0 1 and R 0 1 respectively. The EE is also locally and globally stable if . Vaccination and recovery rates have been shown from the graphical presentation as the important parameter that will eradicate measles from the population.Item Local Stability Analysis of a Tuberculosis Model incorporating Extensive Drug Resistant Subgroup(Pacific Journal of Science and Technology, 2017-05-25) Eguda, F. Y.; Akinwande, N. I.; Abdulrahman, S.; Kuta, F. A.; Somma, Samuel AbuThis paper proposes a mathematical model for the transmission dynamics of Tuberculosis incorporating extensive drug resistant subgroup. The effective reproduction number c R was obtained and conditions for local stability of the disease free equilibrium and endemic equilibrium states were established. Numerical simulations confirmed the stability analysis and further revealed that unless proper measures are taken against typical TB, progression to XDR-TB, mortality and morbidity of infected individuals shall continue to rise.Item Local Stability Analysis of a River Blindness Disease Model with Control(Pacific Journal of Science and Technology., 2018-05-12) Oguntolu, F. A.; Bolarin, G. A.; Somma, Samuel Abu; Bello, A. O.In this paper, a mathematical model to study the dynamics of River Blindness is presented. The existence and uniqueness of solutions of the model were examined by actual solution. The effective reproduction number was obtained using the next generation matrix. The Disease Free Equilibrium (DFE) State was obtained and analysed for stability. It was found that, the DFE State is Locally Asymptotically Stable (LAS) if the effective unstable if reproduction number R 0 1 .Item Mathematical Modeling of Algae Population Dynamics on the Surface of Water(2019-11-12) Abdurrahman, O. N.; Akinwande, N. I.; Somma, Samuel AbuThe paper presented an analytical solution of the exponential growth model of algae population dynamics on the water surface. The Computer Symbolic Algebraic Package, MAPLE is used to simulate the graphical profiles of the population with time while varying the parameters, such as diffusion and rate of change of algae density, governing the subsistence or extinction of the water organisms.Item A TWO POINT BLOCK HYBRID METHOD FOR SOLVING STIFF INITIAL VALUE PROBLEMS(JOURNAL OF MATHEMATICAL SCIENCES, 2011) Muhammad RIn this paper, a self starting hybrid method of order (3, 3,3) is proposed for the solution of stiff initial value problem of the form y' = f(x.y). The continous formation of the integrator enables us to differentiate and evaluate at grid and off grid points. The schemes compared favourably with exact results and results from Okunuga (2008)Item Reformulation of Block Implicit Linear Multistep Method into Runge Kutta Type Method for Initial Value Problem(International Journal of Science and Technology Publications UK, 2015-04) Muhammad R; Y.A Yahaya; A.S. AbdulkareemIn this research work, we reformulated the block hybrid Backward Differentiation Formula (BDF) for 𝑘=4 into Runge Kutta Type Method (RKTM) of the same step number for the solution of Initial value problem in Ordinary Differential Equation (ODE). The method can be use to solve both first and second order (special or general form). It can also be extended to solve higher order ODE. This method differs from conventional BDF as derivation is done only once