School of Electrical Engineering and Technology (SEET)
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/34
School of Electrical Engineering and Technology (SEET)
Browse
2 results
Search Results
Item A survey of cognitive radio handoff schemes, challenges and issues for industrial wireless sensor networks(Elsevier, Journal of Network and Computer Applications, 2017-08-25) Oyewobi S. Stephen; Gerhard HanckeIndustrial wireless sensor network (IWSN) applications are mostly time-bound, mission-critical and highly delay sensitive applications therefore IWSN defines strict, stringent and unique QoS requirements such as timeliness, reliability and availability. In IWSN, unlike other sensor networks, late arrival of packets or delay or disruption to an on-going communication are considered as critical failure. Also, because IWSN is deployed in the overcrowded industrial, scientific, and medical (ISM) band it is difficult to meet this unique QoS requirements due to stiff competition for bandwidth from other technologies operating in ISM band resulting in scarcity of spectrum for reliable communication and/or disruption of ongoing communication. However, cognitive radio (CR) provides more spectral opportunities through opportunistic-use of unused licensed spectrum while ensuring minimal interference to licensed users. Similarly, spectrum handoff, which is a new type of handoff in cognitive radio, has the potential to offer increase bandwidth, reliable, smooth and interference-free communication for IWSNs through opportunistic-use of spectrum, minimal switching-delays, and efficient target channel selection strategies as well as effective link recovery maintenance. As a result, a new paradigm known as cognitive radio industrial wireless sensor network (CR-IWSN) has become the interest of recent research efforts. In this paper, we highlight and discuss important QoS requirements of IWSN as well as efforts of existing IWSN standards to address the challenges. We discuss the potential and how cognitive radio and spectrum handoff can be useful in the attempt to provide real-time reliable and smooth communication for IWSNs.Item IoT in the Wake of COVID-19: A Survey on Contributions, Challenges and Evolution(IEEEE Access, 2020) Musa Ndiaye; Oyewobi S. Stephen; Adnan M. Abu-Mahfouz; Gerhard Hancke; Anish M. Kurien; Karim DjouaniThe novel coronavirus (COVID-19), declared by the World Health Organization (WHO) as a global pandemic, has brought with it changes to the general way of life. Major sectors of the world industry and economy have been affected and the Internet of Things (IoT) management and framework is no exception in this regard. This article provides an up to date survey on how a global pandemic such as COVID-19 has affected the world of IoT technologies. It looks at the contributions that IoT and associated sensor technologies have made towards virus tracing, tracking and spread mitigation. The associated challenges of deployment of sensor hardware in the face of a rapidly spreading pandemic have been looked into as part of this review article. The effects of a global pandemic on the evolution of IoT architectures and management have also been addressed, leading to the likely outcomes on future IoT implementations. In general, this article provides an insight into the advancement of sensor-based E-health towards the management of global pandemics. It also answers the question of how a global virus pandemic has shaped the future of IoT networks.