School of Electrical Engineering and Technology (SEET)

Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/34

School of Electrical Engineering and Technology (SEET)

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    STATE OF THE ART ON PATH LOSS MODEL DEVELOPMENT
    (Humminbird Publications and Research International, 2024-01-29) Ibukun Aderele Adeyemi; Jonathan Gana Kolo; Ajiboye, Johnson Adegbenga
    This is a study of path loss prediction modelling. Path loss modelling is widely applied in determining mobile wireless signal propagation in a given environment. This helps radio network planners to have an accurate view of requirements to obtain good quality of service when deploying radio networks. The empirical models are exhaustively analysed and compared with the emerging machine learning models. Also, mention is made of RIS models which are beginning to gather some attention due to their focus on the programmable electromagnetic properties. The study was able to establish empirical models as the most simple and efficient method of path loss prediction models. Attention is paid to the application of these models in both 900MHz and 1800MHz in urban, suburban and rural areas. This is due to the wide application of these frequencies in mobile wireless communication. The machine learning models present better results and give a high level of accuracy for diverse environments. However, they require large volume of data and environmental features extraction at both 2D and 3D to get reliable model. This makes it imperative to carry out field measurement tasks that are basically synonymous with methodologies employed in empirical approach to modelling. The variation in vegetation determines the best fit model for each particular case as well as the derivation of path loss exponent. The RIS modelling approach gives positive views especially at higher frequencies. The tuneable properties of the surfaces give a wide berth in application across different frequency spectrum. Complex and large volume of computation required in use of RIS implies that machine learning models, especially deep learning models will be better off incorporated into the process. It is thus beneficial to the researcher to ensure that a good grasp of the different approaches highlighted is obtained such that the benefits available are merged to produce finer results.
  • Item
    Performance of Path Loss Models over Mid-Band and High-Band Channels for 5G Communication Networks: A Review
    (MDPI, 2023-11-07) Farooq E Shuaibu; Elizabeth N. Onwuka; Nathaniel Salawu; Oyewobi S. Stephen; Karim Djouani; Adnan M. Abu-Mahfouz
    The rapid development of 5G communication networks has ushered in a new era of highspeed, low-latency wireless connectivity, as well as the enabling of transformative technologies. However, a crucial aspect of ensuring reliable communication is the accurate modeling of path loss, as it directly impacts signal coverage, interference, and overall network efficiency. This review paper critically assesses the performance of path loss models in mid-band and high-band frequencies and examines their effectiveness in addressing the challenges of 5G deployment. In this paper, we first present the summary of the background, highlighting the increasing demand for high-quality wireless connectivity and the unique characteristics of mid-band (1–6 GHz) and high-band (>6 GHz) frequencies in the 5G spectrum. The methodology comprehensively reviews some of the existing path loss models, considering both empirical and machine learning approaches. We analyze the strengths and weaknesses of these models, considering factors such as urban and suburban environments and indoor scenarios. The results highlight the significant advancements in path loss modeling for mid-band and high-band 5G channels. In terms of prediction accuracy and computing effectiveness, machine learning models performed better than empirical models in both mid-band and high-band frequency spectra. As a result, they might be suggested as an alternative yet promising approach to predicting path loss in these bands. We consider the results of this review to be promising, as they provide network operators and researchers with valuable insights into the state-of-the-art path loss models for mid-band and high-band 5G channels. Future work suggests tuning an ensemble machine learning model to enhance a stable empirical model with multiple parameters to develop a hybrid path loss model for the mid-band frequency spectrum.