Journal Articles
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/1
Journal Articles
Browse
3 results
Search Results
Item Time-delayed modelling of the COVID-19 dynamics with a convex incidence rate(Elsevier BV, 2022) Oluwatosin Babasola; Oshinubi Kayode; Olumuyiwa James Peter; Faithful Chiagoziem Onwuegbuche; Festus Abiodun OguntoluCOVID-19 pandemic represents an unprecedented global health crisis which has an enormous impact on the world population and economy. Many scientists and researchers have combined efforts to develop an approach to tackle this crisis and as a result, researchers have developed several approaches for understanding the COVID-19 transmission dynamics and the way of mitigating its effect. The implementation of a mathematical model has proven helpful in further understanding the behaviour which has helped the policymaker in adopting the best policy necessary for reducing the spread. Most models are based on a system of equations which assume an instantaneous change in the transmission dynamics. However, it is believed that SARS-COV-2 have an incubation period before the tendency of transmission. Therefore, to capture the dynamics adequately, there would be a need for the inclusion of delay parameters which will account for the delay before an exposed individual could become infected. Hence, in this paper, we investigate the SEIR epidemic model with a convex incidence rate incorporated with a time delay. We first discussed the epidemic model as a form of a classical ordinary differential equation and then the inclusion of a delay to represent the period in which the susceptible and exposed individuals became infectious. Secondly, we identify the disease-free together with the endemic equilibrium state and examine their stability by adopting the delay differential equation stability theory. Thereafter, we carried out numerical simulations with suitable parameters choice to illustrate the theoretical result of the system and for a better understanding of the model dynamics. We also vary the length of the delay to illustrate the changes in the model as the delay parameters change which enables us to further gain an insight into the effect of the included delay in a dynamical system. The result confirms that the inclusion of delay destabilises the system and it forces the system to exhibit an oscillatory behaviour which leads to a periodic solution and it further helps us to gain more insight into the transmission dynamics of the disease and strategy to reduce the risk of infection.Item Mathematical analysis on the vertical and horizontal transmission dynamics of HIV and Zika virus co-infection(Elsevier BV, 2024-03) Benjamin Idoko Omede; Bolarinwa Bolaji; Olumuyiwa James Peter; Abdullahi A. Ibrahim; Festus Abiodun OguntoluThe co-infection of HIV and Zika virus (ZIKV) poses a complex and understudied health challenge, requiring a comprehensive investigation into the synergistic effects, potential complications, and the impact on affected individuals. Consequently, This paper introduces a novel deterministic mathematical model that examines the transmission dynamics of HIV and Zika virus co-infection, considering both vertical and horizontal transmission. The analysis begins with two sub-models: one for HIV-only and another for ZIKV-only. Qualitative examination indicates that the HIV only sub-model achieves a globally asymptotically stable disease-free equilibrium when the associated reproduction number is below unity. In contrast, the ZIKV only sub-model exhibits a backward bifurcation phenomenon, where both stable disease-free and stable endemic equilibria co-exist when the associated reproduction number of the ZIKV only sub-model is less than unity. Thus, the backward bifurcation property makes effective control of ZIKV infection in the population difficulty when the associated reproduction number is less than unity. It is shown, using the center manifold theory that the full HIV-ZIKV co-infection model undergoes the phenomenon of backward bifurcation. We carried out the sensitivity analysis of the HIV and ZIKV basic reproduction numbers to determine the parameters that positively influence the spread of the two diseases. It is also revealed that an increase in HIV infection in the population will positively influence the transmission of ZIKV. We validated the ZIKV only sub-model by fitting the ZIKV only sub-model to the confirmed cases of ZIKV data in Brazil. The outcome of the numerical simulations of HIV-ZIKV co-infection model reveals that the two diseases co-exist when their basic reproduction number surpasses one. Furthermore, increasing HIV treatment rate significantly reduces the burden of co-infection with the Zika virus.Item Mathematical Modeling on the Transmission Dynamics of Diphtheria with Optimal Control Strategies(Department of Mathematics, Universitas Negeri Gorontalo, 2025-03-29) Festus Abiodun Oguntolu; Olumuyiwa James Peter; Benjamin Idoko Omede; Ghaniyyat Bolanle Balogun; Aminat Olabisi Ajiboye; Hasan S. PanigoroDiphtheria is an acute bacterial infection caused by Corynebacterium diphtheriae, characterized by the formation of a pseudo-membrane in the throat, which can lead to airway obstruction and systemic complications. Despite the availability of effective vaccines, diphtheria remains a significant public health concern in many regions, particularly in areas with low immunization coverage. In this study, we formulated and rigorously analyzed a deter ministic epidemiological mathematical model to gain insight into the transmission dynamics of Diphtheria infection, incorporating the concentration of Corynebacterium Diphtheriae in the environment. The analysis of the model begins with the computation of the basic reproduction number and the examination of the local stability of the disease-free equilibrium using the Routh-Hurwitz criterion. An in-depth analysis of the model reveals that the model undergoes the phenomenon of backward bifurcation. This characteristic poses significant hurdles in effectively controlling Diph theria infection within the population. However, under the assumption of no re-infection of Diphtheria infection after recovery, the disease-free equilibrium point is globally asymptotically stable whenever the basic reproduction num ber is less than one. Furthermore, the sensitivity analysis of the basic reproduction number was carried out in order to determine the impact of each of the model basic parameters that contribute to the transmission of the disease. Utilizing the optimal control theory to effectively curb the spread of Diphtheria, We introduced two time dependent control measures, to mitigate the spread of Diphtheria. These time dependent control measures represent preventive actions, such as public enlightenment campaign to sensitize and educate the general public on the dynamics of Diph theria and proper personal hygiene which includes regular washing of hands to prevent susceptible individuals from acquiring Diphtheria, and environmental sanitation practices such as cleaning of surfaces and door handle to reduced the concentration of Corynebacterium diphtheriae in the environment. The results from the numerical simulations reveal that Diphtheria infection can successfully be controlled and mitigated within the population if we can increase the vaccination rate and the decay rate of Corynebacterium Diphtheriae in the environment, as well as properly and effectively implementing these optimal control measures simultaneously.