Journal Articles
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/1
Journal Articles
Browse
6 results
Search Results
Item Forecasting of COVID-19 pandemic in Nigeria using real statistical data(SCIK Publishing Corporation, 2021) Adesoye Idowu Abioye; Mfon David Umoh; Olumuyiwa James Peter; Helen Olaronke Edogbanya; Festus Abiodun Oguntolu; Oshinubi Kayode; Sylvanus AmadiegwuIn this paper, we used data released by Nigeria Center for Disease Control (NCDC) every 24 hours for the past consecutive two months to forecast the Coronavirus disease 2019 (COVID-19) cases for the months (September – October 2020). The linear regression forecasting model and R software package are used for the forecast and simulations respectively. The COVID-19 cases in Nigeria is on a decreasing trend and the forecast result show that in the next two months, there is going to be a decrease in new COVID-19 cases in Nigeria. COVID-19 in Nigeria can be drastically reduced if the organizations, management, government or policymakers are constantly proactive concerning these research findings.Item Time-delayed modelling of the COVID-19 dynamics with a convex incidence rate(Elsevier BV, 2022) Oluwatosin Babasola; Oshinubi Kayode; Olumuyiwa James Peter; Faithful Chiagoziem Onwuegbuche; Festus Abiodun OguntoluCOVID-19 pandemic represents an unprecedented global health crisis which has an enormous impact on the world population and economy. Many scientists and researchers have combined efforts to develop an approach to tackle this crisis and as a result, researchers have developed several approaches for understanding the COVID-19 transmission dynamics and the way of mitigating its effect. The implementation of a mathematical model has proven helpful in further understanding the behaviour which has helped the policymaker in adopting the best policy necessary for reducing the spread. Most models are based on a system of equations which assume an instantaneous change in the transmission dynamics. However, it is believed that SARS-COV-2 have an incubation period before the tendency of transmission. Therefore, to capture the dynamics adequately, there would be a need for the inclusion of delay parameters which will account for the delay before an exposed individual could become infected. Hence, in this paper, we investigate the SEIR epidemic model with a convex incidence rate incorporated with a time delay. We first discussed the epidemic model as a form of a classical ordinary differential equation and then the inclusion of a delay to represent the period in which the susceptible and exposed individuals became infectious. Secondly, we identify the disease-free together with the endemic equilibrium state and examine their stability by adopting the delay differential equation stability theory. Thereafter, we carried out numerical simulations with suitable parameters choice to illustrate the theoretical result of the system and for a better understanding of the model dynamics. We also vary the length of the delay to illustrate the changes in the model as the delay parameters change which enables us to further gain an insight into the effect of the included delay in a dynamical system. The result confirms that the inclusion of delay destabilises the system and it forces the system to exhibit an oscillatory behaviour which leads to a periodic solution and it further helps us to gain more insight into the transmission dynamics of the disease and strategy to reduce the risk of infection.Item How have COVID-19 Confirmed Cases and Deaths Affected Stock Markets? Evidence from Nigeria(CONTEMPORARY ECONOMICS, 2021) Nurudeen Abu; Awadh Ahmed Mohammed Gamal; Musa Abdullahi Sakanko; Ana Mateen; David Joseph; Ben-Obi Onyewuchi AmaechiThis study assesses the effect of COVID-19 proxied by the number of confirmed cases of the infection and deaths on Nigeria’s stock market over the 23rd March to 11th September 2020 period using the autoregressive distributed lag (ARDL), canonical cointegrating regression (CCR), dynamic ordinary least squares (DOLS) and fully modified ordinary least squares (FMOLS) techniques. The bounds test to cointegration result reveals that a long-run relationship exists between COVID-19 and Nigeria’s stock market (along with oil prices and exchange rate). The results of the various estimations demonstrate that COVID-19 (proxied by the number of confirmed cases of infection) has a negative and significant impact on stock market performance, while the number deaths has a positive and significant impact on the market in the long-run. In addition, oil prices and exchange rate have a significant and positive effect on stock market performance in the long-run. Similar results were found for sub-sectors including consumer goods and healthcare sub-sectors of the stock market. The study recommends policies to curb the spread of the virus.Item Modelling the Impacts of Media Campaign and Double Dose Vaccination in Controlling COVID-19 in Nigeria(Alexandria Engineering Journal, 2023-01-15) Akinwande, N. I.; Somma, Samuel Abu; Olayiwola, R. O.; Ashezua, T. T.; Gweryina, R. I.; Oguntolu, F. A.Corona virus disease (COVID-19) is a lethal disease that poses public health challenge in both developed and developing countries of the world. Owing to the recent ongoing clinical use of COVID-19 vaccines and noncompliance to COVID-19 health protocols, this study presents a deterministic model with an optimal control problem for assessing the community-level impact of media campaign and double-dose vaccination on the transmission and control of COVID-19. Detailed analysis of the model shows that, using the Lyapunov function theory and the theory of centre manifold, the dynamics of the model is determined essentially by the control reproduction number (𝑅𝑚𝑣). Consequently, the model undergoes the phenomenon of forward bifurcation in the absence of the double dose vaccination effects, where the global disease-free equilibrium is obtained whenever 𝑅𝑚𝑣 ≤ 1. Numerical simulations of the model using data relevant to the transmission dynamics of the disease in Nigeria, show that, certain values of the basic reproduction number ((𝑅0 ≥ 7)) may not prevent the spread of the pandemic even if 100% media compliance is achieved. Nevertheless, with assumed 75% (at 𝑅0 = 4)) media efficacy of double dose vaccination, the community herd immunity to the disease can be attained. Furthermore, Pontryagin’s maximum principle was used for the analysis of the optimized model by which necessary conditions for optimal controls were obtained. In addition, the optimal simulation results reveal that, for situations where the cost of implementing the controls (media campaign and double dose vaccination) considered in this study is low, allocating resources to media campaign-only strategy is more effective than allocating them to a firstdose vaccination strategy. More so, as expected, the combined media campaign-double dose vaccination strategy yields a higher population-level impact than the media campaign-only strategy, double-dose vaccination strategy or media campaign-first dose vaccination strategy.Item IoT in the Wake of COVID-19: A Survey on Contributions, Challenges and Evolution(IEEEE Access, 2020) Musa Ndiaye; Oyewobi S. Stephen; Adnan M. Abu-Mahfouz; Gerhard Hancke; Anish M. Kurien; Karim DjouaniThe novel coronavirus (COVID-19), declared by the World Health Organization (WHO) as a global pandemic, has brought with it changes to the general way of life. Major sectors of the world industry and economy have been affected and the Internet of Things (IoT) management and framework is no exception in this regard. This article provides an up to date survey on how a global pandemic such as COVID-19 has affected the world of IoT technologies. It looks at the contributions that IoT and associated sensor technologies have made towards virus tracing, tracking and spread mitigation. The associated challenges of deployment of sensor hardware in the face of a rapidly spreading pandemic have been looked into as part of this review article. The effects of a global pandemic on the evolution of IoT architectures and management have also been addressed, leading to the likely outcomes on future IoT implementations. In general, this article provides an insight into the advancement of sensor-based E-health towards the management of global pandemics. It also answers the question of how a global virus pandemic has shaped the future of IoT networks.Item A Global Asymptotic Stability of COVID-19 Diabetes Complication Free Equilibrium(Journal of Science, Technology, Mathematics and Education (JOSTMED), 2024-03-25) Yusuf, A,; Akinwande, N. I.; Olayiwola, R. O.; Kuta, F. A.; Somma, Samuel AbuIn this paper, a Mathematical modelling of COVID-19 incorporating the comorbidity of Diabetes was established base on the accompanying assumptions, a global asymptotic of the same model was developed by applying the theorem of Castillo-Chavez by fixing a point to be globally asymptotic stable equilibrium of the system, provided that and the two set conditions are satisfied. It is very clear that so the conditions are not met. Hence, may not be globally asymptotically stable when .