School of Physical Sciences (SPS)
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/30
School of Physical Sciences (SPS)
Browse
Item A MATHEMATICAL MODEL OF YELLOW FEVER DISEASE DYNAMICS INCORPORATING SPECIAL SATURATION INTERACTIONS FUNCTIONS(1st SPS Biennial International Conference Federal University of Technology, Minna, Nigeria, 2017-05-05) Akinwande, N. I.; Abdulrahman, S.; Ashezua, T. T.; Somma, Samuel AbuWe proposed an Mathematical Model of Yellow Fever Disease Dynamics Incorporating Special Saturation Process functions, obtained the equilibrium states of the model equations and analyzed same for stability. Conditions for the elimination of the disease in the population are obtained as constraint inequalities on the parameters using the basic reproduction number 0 R demographic and epidemiological data. . Graphical simulations are presented using someItem SENSITIVITY ANALYSIS FOR THE MATHEMATICAL MODELING OF MEASLES DISEASE INCORPORATING TEMPORARY PASSIVE IMMUNITY(1st SPS Biennial International Conference Federal University of Technology, Minna, Nigeria, 2017-05-05) Somma, Samuel Abu; Akinwande, N. I.Measles is an airborne disease which spreads easily through the coughs and sneezes of those infected. Measles antibodies are transferred from mothers who have been vaccinated against measles or have been previously infected with measles to their newborn children. These antibodies are transferred in low amounts and usually last six months or less. In this paper a mathematical model of measles disease was formulated incorporating temporary passive immunity. There exist two equilibria in the model; Disease Free Equilibrium (DFE) and Endemic Equilibrium (EE). The Disease Free Equilibrium (DFE) state was analyzed for local and global stability. The Basic Reproduction Number 0 R was computed and used to carried out the sensitivity analysis with some parameters of the mode. The analysis shows that as contact rate increases the 0 as the vaccination rate v increases the 0 R decreases. Sensitive parameters with the R R 0 increases and were presented graphically. The disease will die out of the population if the attention is given to high level immunization.