School of Physical Sciences (SPS)

Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/30

School of Physical Sciences (SPS)

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Mathematical model of measles transmission dynamics using real data from Nigeria
    (Informa UK Limited, 2022-05-25) Olumuyiwa James Peter; Mayowa M. Ojo; Ratchada Viriyapong; Festus Abiodun Oguntolu
    Measles is a highly contagious and life-threatening disease caused by a virus called morbillivirus, despite the availability of a safe and cost-effective vaccine, it remains a leading cause of death, especially in children. Measles spreads easily from person to person via infected people's coughs and sneezes. It can also be transmitted through direct contact with the mouth or contaminated surfaces. To have a better knowledge of measles epidemiology in Nigeria, we develop a deterministic mathematical model to study the transmission dynamics of the disease in the population. The boundary of the model solution is performed, both equilibrium points are calculated, and the basic reproduction number ℛ0 is determined. We have proved that when ℛ0<1, the disease-free equilibrium point is both locally and globally stable. When ℛ0>1, the endemic equilibrium point exists and is stable if it satisfies Routh–Hurwitz criteria. We demonstrate the model's effectiveness by using a real-life application of the disease spread in Nigeria. We fit the proposed model using available data from Nigeria Center for Disease Control (NCDC) from January to December 2020 to obtain the best fit, this help us to determine the accuracy of the proposed model's representation to the real-world data. We investigate the impact of vaccination rate and hospitalization of infected individuals on the dynamics of measles in the population. The result shows that the combined control strategies reduce the peak of infection faster than the single control strategy.
  • Item
    Stability Analysis of the Disease-Free Equilibrium State of a Mathematical Model of Measles Transmission Dynamics
    (Proceedings of 2nd International Conference on Mathematical Modelling, Optimization and Analysis of Disease Dynamics (ICMMOADD) 2025. Federal University of Technology, Minna, Nigeria, 2025-02-20) Adama, P. W.; Somma, Samuel Abu
    Measles is an acute viral infectious disease caused by the Measles morbillivirus, a member of the paramyxovirus family. The virus is primarily transmitted through direct contact and airborne droplets. In this study, a mathematical model was developed to examine the transmission dynamics of measles and explore effective control measures. The stability of measles-free equilibrium was analyzed, and the results indicate that the equilibrium is locally asymptotically stable when the basic reproduction number R0 is less than or equal to unity. Numerical simulations were conducted to validate the analytical findings, demonstrating that measles can be eradicated if a sufficiently high level of treatment is applied to the infected population.