School of Physical Sciences (SPS)

Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/30

School of Physical Sciences (SPS)

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    Mathematical model for the dynamics of COVID-19 Pandemic Incorporating Isolation and Non-Linear Recovery Rate
    (ISEP Porto-Portugal, 2024-06-22) N. I. Akinwande; T. T. Ashezua; S. A. Somma; O. N. Abdurrahman; F. A. Oguntolu; O. M. Adetutu; R. I. Gweryina; R. O. Olayiwola; T. P. Adajime; F. A. Kuta; S. Abdulrahman; A. I. Enagi; G. A. Bolarin; M. D. Shehua; A. Usman.
    COVID-19 has in recent times created a major health concern in both developed and developing parts of the world. In this wise, there is every need to theoretically explore ways that will provide some insights into curtailing the spread of the disease in the population. In this paper, we present a population model for COVID-19 pandemic incorporating isolation and nonlinear recovery rate. The reproduction number was obtained using the next generation method. The disease-free equilibrium (DFE) of the model (1) was found to be locally and globally asymptotically stable whenever the associated reproduction number is less than unity. Results from the sensitivity analysis of the model, using the reproduction number, RC show that the top parameters that largely drive the dynamics of COVID-19 in the population are COVID-19 transmission rate and the proportion of individuals progressing to the class of reported symptomatic infectious individuals. Numerical simulations of the model shows that increasing the recovery rate of infected patients in the population will lead to an initial decrease in the number of hospitalized patients before subsequent increase. The reason for this could be attributed to the number of unreported symptomatic infectious individuals who are progressing to reported symptomatic infectious stage of infection for immediate isolation.
  • Item
    SENSITIVITY ANALYSIS FOR THE MATHEMATICAL MODELING OF MEASLES DISEASE INCORPORATING TEMPORARY PASSIVE IMMUNITY
    (1st SPS Biennial International Conference Federal University of Technology, Minna, Nigeria, 2017-05-05) Somma, Samuel Abu; Akinwande, N. I.
    Measles is an airborne disease which spreads easily through the coughs and sneezes of those infected. Measles antibodies are transferred from mothers who have been vaccinated against measles or have been previously infected with measles to their newborn children. These antibodies are transferred in low amounts and usually last six months or less. In this paper a mathematical model of measles disease was formulated incorporating temporary passive immunity. There exist two equilibria in the model; Disease Free Equilibrium (DFE) and Endemic Equilibrium (EE). The Disease Free Equilibrium (DFE) state was analyzed for local and global stability. The Basic Reproduction Number 0 R was computed and used to carried out the sensitivity analysis with some parameters of the mode. The analysis shows that as contact rate  increases the 0 as the vaccination rate v increases the 0 R decreases. Sensitive parameters with the R R 0 increases and were presented graphically. The disease will die out of the population if the attention is given to high level immunization.
  • Item
    Population dynamics of a mathematical model for Campylobacteriosis
    (Proceedings of International Conference on Mathematical Modelling Optimization and Analysis of Disease Dynamics (ICMMOADD), 2024-02-22) Ashezua, T. T.; Salemkaan, M. T.; Somma, Samuel Abu
    The bacterium campylobacter is the cause of campylobacteriosis, a major cause of foodborne illness that goes by the most common name for diarrheal illnesses. This paper develops and analyzes a new mathematical model for campylobacteriosis. It is demonstrated that in cases where the corresponding reproduction number is smaller than unity, the model's disease-free equilibrium is both locally and globally stable. The numerical simulation results indicate that increasing the treatment rate for both symptomatic and asymptomatic disease-infected individuals resulted in a decrease in the number of asymptomatic and symptomatic individuals, respectively, and a rise in the population's number of recovered individuals.
  • Item
    Local Stability Analysis of a Tuberculosis Model incorporating Extensive Drug Resistant Subgroup
    (Pacific Journal of Science and Technology, 2017-05-25) Eguda, F. Y.; Akinwande, N. I.; Abdulrahman, S.; Kuta, F. A.; Somma, Samuel Abu
    This paper proposes a mathematical model for the transmission dynamics of Tuberculosis incorporating extensive drug resistant subgroup. The effective reproduction number c R was obtained and conditions for local stability of the disease free equilibrium and endemic equilibrium states were established. Numerical simulations confirmed the stability analysis and further revealed that unless proper measures are taken against typical TB, progression to XDR-TB, mortality and morbidity of infected individuals shall continue to rise.
  • Item
    Local Stability Analysis of a River Blindness Disease Model with Control
    (Pacific Journal of Science and Technology., 2018-05-12) Oguntolu, F. A.; Bolarin, G. A.; Somma, Samuel Abu; Bello, A. O.
    In this paper, a mathematical model to study the dynamics of River Blindness is presented. The existence and uniqueness of solutions of the model were examined by actual solution. The effective reproduction number was obtained using the next generation matrix. The Disease Free Equilibrium (DFE) State was obtained and analysed for stability. It was found that, the DFE State is Locally Asymptotically Stable (LAS) if the effective unstable if reproduction number R 0  1 .