School of Physical Sciences (SPS)

Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/36

School of Physical Sciences (SPS)

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Numerical Assessment of Some Almost Runge-Kutta and Runge-Kutta Methods for First- Order Differential Equation
    (Maths Model Research Group. FUT, Minna, Nigeria, 2025-02-20) Khadeejah James Audu; Muideen Taiwo Kharashi; Yusuph Amuda Yahaya; James Nkereuwem Essien; Abraham Ajeolu Oluwasegun
    Numerical methods play a critical role in solving first-order Ordinary Differential Equations (ODEs), with their efficiency and accuracy being key considerations. This study conducts a detailed comparative analysis of four numerical schemes: the Almost Runge-Kutta fourth-order scheme (ARK4), the Almost Runge-Kutta third-order fourth-stage scheme (ARK34), the classical Runge- Kutta fourth-order scheme (RK4), and the Runge-Kutta fourth-order fifth-stage scheme (RK45). The methods are evaluated based on their computational accuracy, error behavior, and efficiency. Numerical experiments reveal that all methods deliver highly accurate solutions, with ARK4 emerging as the most effective due to its lower computational complexity. ARK4 demonstrates superior performance in achieving minimal absolute error with reduced computational effort, making it a suitable choice for solving first-order ODEs. This study highlights ARK4 as a viable alternative to conventional Runge-Kutta methods for practical applications.
  • Item
    Utilizing the Artificial Neural Network Approach for the Resolution of First-Order Ordinary Differential Equations
    (Penteract Technology, Malaysia, 2024-06-16) Khadeejah James Audu; Marshal Benjamin; Umaru Mohammed; Yusuph Amuda Yahaya
    Ordinary Differential Equations (ODEs) play a crucial role in various scientific and professional domains for modeling dynamic systems and their behaviors. While traditional numerical methods are widely used for approximating ODE solutions, they often face challenges with complex or nonlinear systems, leading to high computational costs. This study aims to address these challenges by proposing an artificial neural network (ANN)- based approach for solving first-order ODEs. Through the introduction of the ANN technique and exploration of its practical applications, we conduct numerical experiments on diverse first-order ODEs to evaluate the convergence rate and computational efficiency of the ANN. Our results from comprehensive numerical tests demonstrate the efficacy of the ANN-generated responses, confirming its reliability and potential for various applications in solving first-order ODEs with improved efficiency and accuracy.
  • Item
    Utilizing the Artificial Neural Network Approach for the Resolution of First-Order Ordinary Differential Equations
    (Malaysian Journal of Science and Advanced Technology, 2024-05-28) Khadeejah James Audu; Marshal Benjamin; Umaru Mohammed; Yusuph Amuda Yahaya
    Ordinary Differential Equations (ODEs) play a crucial role in various scientific and professional domains for modeling dynamic systems and their behaviors. While traditional numerical methods are widely used for approximating ODE solutions, they often face challenges with complex or nonlinear systems, leading to high computational costs. This study aims to address these challenges by proposing an artificial neural network (ANN)- based approach for solving first-order ODEs. Through the introduction of the ANN technique and exploration of its practical applications, we conduct numerical experiments on diverse first-order ODEs to evaluate the convergence rate and computational efficiency of the ANN. Our results from comprehensive numerical tests demonstrate the efficacy of the ANN-generated responses, confirming its reliability and potential for various applications in solving first-order ODEs with improved efficiency and accuracy.