School of Physical Sciences (SPS)

Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/36

School of Physical Sciences (SPS)

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Exploring the dynamics of lymphatic filariasis through a mathematical model and analysis with Holling type II treatment functions
    (Iranian Journal of Numerical Analysis and Optimization, 2025-06) F. A. Oguntolu; O. J. Peter; B. I. Omede; T. A. Ayoola; G. B. Balogun
    This paper presents a robust deterministic mathematical model incorporat-ing Holling type II treatment functions to comprehensively investigate the dynamics of Lymphatic filariasis. Through qualitative analysis, the model demonstrates the occurrence of backward bifurcation when the basic re-production number is less than one. Moreover, numerical simulations are employed to illustrate and validate key analytical findings. These simula-tion results emphasize the significance of accessible medical resources and the efficacy of prophylactic drugs in eradicating Lymphatic filariasis. The findings show that, enhancing medical resource availability and implement-ing effective treatment strategies in rural areas and regions vulnerable to Lymphatic filariasis is crucial for combating the transmission and control of this disease.
  • Item
    Mathematical Modeling on the Transmission Dynamics of Diphtheria with Optimal Control Strategies
    (Department of Mathematics, Universitas Negeri Gorontalo, 2025-03-29) Festus Abiodun Oguntolu; Olumuyiwa James Peter; Benjamin Idoko Omede; Ghaniyyat Bolanle Balogun; Aminat Olabisi Ajiboye; Hasan S. Panigoro
    Diphtheria is an acute bacterial infection caused by Corynebacterium diphtheriae, characterized by the formation of a pseudo-membrane in the throat, which can lead to airway obstruction and systemic complications. Despite the availability of effective vaccines, diphtheria remains a significant public health concern in many regions, particularly in areas with low immunization coverage. In this study, we formulated and rigorously analyzed a deter ministic epidemiological mathematical model to gain insight into the transmission dynamics of Diphtheria infection, incorporating the concentration of Corynebacterium Diphtheriae in the environment. The analysis of the model begins with the computation of the basic reproduction number and the examination of the local stability of the disease-free equilibrium using the Routh-Hurwitz criterion. An in-depth analysis of the model reveals that the model undergoes the phenomenon of backward bifurcation. This characteristic poses significant hurdles in effectively controlling Diph theria infection within the population. However, under the assumption of no re-infection of Diphtheria infection after recovery, the disease-free equilibrium point is globally asymptotically stable whenever the basic reproduction num ber is less than one. Furthermore, the sensitivity analysis of the basic reproduction number was carried out in order to determine the impact of each of the model basic parameters that contribute to the transmission of the disease. Utilizing the optimal control theory to effectively curb the spread of Diphtheria, We introduced two time dependent control measures, to mitigate the spread of Diphtheria. These time dependent control measures represent preventive actions, such as public enlightenment campaign to sensitize and educate the general public on the dynamics of Diph theria and proper personal hygiene which includes regular washing of hands to prevent susceptible individuals from acquiring Diphtheria, and environmental sanitation practices such as cleaning of surfaces and door handle to reduced the concentration of Corynebacterium diphtheriae in the environment. The results from the numerical simulations reveal that Diphtheria infection can successfully be controlled and mitigated within the population if we can increase the vaccination rate and the decay rate of Corynebacterium Diphtheriae in the environment, as well as properly and effectively implementing these optimal control measures simultaneously.
  • Item
    Modelling the Impacts of Media Campaign and Double Dose Vaccination in Controlling COVID-19 in Nigeria
    (Alexandria Engineering Journal, 2023-01-15) Akinwande, N. I.; Somma, Samuel Abu; Olayiwola, R. O.; Ashezua, T. T.; Gweryina, R. I.; Oguntolu, F. A.
    Corona virus disease (COVID-19) is a lethal disease that poses public health challenge in both developed and developing countries of the world. Owing to the recent ongoing clinical use of COVID-19 vaccines and noncompliance to COVID-19 health protocols, this study presents a deterministic model with an optimal control problem for assessing the community-level impact of media campaign and double-dose vaccination on the transmission and control of COVID-19. Detailed analysis of the model shows that, using the Lyapunov function theory and the theory of centre manifold, the dynamics of the model is determined essentially by the control reproduction number (𝑅𝑚𝑣). Consequently, the model undergoes the phenomenon of forward bifurcation in the absence of the double dose vaccination effects, where the global disease-free equilibrium is obtained whenever 𝑅𝑚𝑣 ≤ 1. Numerical simulations of the model using data relevant to the transmission dynamics of the disease in Nigeria, show that, certain values of the basic reproduction number ((𝑅0 ≥ 7)) may not prevent the spread of the pandemic even if 100% media compliance is achieved. Nevertheless, with assumed 75% (at 𝑅0 = 4)) media efficacy of double dose vaccination, the community herd immunity to the disease can be attained. Furthermore, Pontryagin’s maximum principle was used for the analysis of the optimized model by which necessary conditions for optimal controls were obtained. In addition, the optimal simulation results reveal that, for situations where the cost of implementing the controls (media campaign and double dose vaccination) considered in this study is low, allocating resources to media campaign-only strategy is more effective than allocating them to a firstdose vaccination strategy. More so, as expected, the combined media campaign-double dose vaccination strategy yields a higher population-level impact than the media campaign-only strategy, double-dose vaccination strategy or media campaign-first dose vaccination strategy.