School of Physical Sciences (SPS)
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/36
School of Physical Sciences (SPS)
Browse
3 results
Search Results
Item Modeling the impact of control strategies on malaria and COVID-19 coinfection: insights and implications for integrated public health interventions(Springer Science and Business Media LLC, 2023-12-27) Adesoye Idowu Abioye; Olumuyiwa James Peter; Emmanuel Addai; Festus Abiodun Oguntolu; Tawakalt Abosede AyoolaThis work discusses the challenge posed by the simultaneous occurrence of malaria and COVID-19 coinfection on global health systems. We propose a novel fractional order mathematical model malaria and COVID-19 coinfection. To assess the impact of control strategies on both diseases, we consider two control strategies which are, personal protection against mosquito bites ($$u_{1}(t)$$) and preventive measures for COVID-19 ($$u_{2}(t)$$). Numerical simulations demonstrate that consistent application of these measures leads to significant reductions in disease transmission. Using insecticide-treated nets and repellents during day and night effectively reduces malaria transmission, while implementing facial masks and hand hygiene controls COVID-19 spread. The most substantial impact is observed when both sets of protection measures are simultaneously adopted, highlighting the importance of integrated strategies. The study provides valuable insights into malaria and COVID-19 coinfection dynamics and emphasizes the impact of the control measures. of individual behavior and consistent adoption of personal protection measures to control both diseases. It underscores the need for integrated public health interventions to combat the dual burden of malaria and COVID-19, contributing to the development of targeted and efficient control measures.Item Stability and Bifurcation Analysis of a Mathematical Modeling of Measles Incorporating Vitamin a Supplement(Sule Lamido University Journal of Science and Technology (SLUJST), 2021-01-20) Somma, Samuel Abu; Akinwande, N. I.; Gana, P.; Ogwumu, O. D.; Ashezua, T. T.; Eguda, F. YMeasles is transmissible disease that is common among children. The death caused by measles among children of five years and below is alarming in spite of the safe and effective vaccine. It has been discovered that Vitamin A Deficiency (VAD) in children increases their chances of measles infection. In this paper, the mathematical model of measles incorporating Vitamin A supplement as treatment was formulated and analyzed. The equilibrium points are obtained and analyzed for stability. Bifurcation and sensitivity analyses were carried out to gain further insight into the spread and control of measles. The stability analysis revealed that Disease Free Equilibrium (DFE) is stable if R0 1. The bifurcation analysis revealed forward bifurcation while the sensitivity analysis shows the most sensitive parameters of the model that are responsible for the spread and control of the diseases. The effect of sensitive parameters on Basic Reproduction Number, 0 R were presented graphically. Vaccination, recovery and Vitamin A supplement rates have been shown from the graphical presentation as the important parameter that will eradicate the measles from the population while contact and loss of immunity rates have shown that measles will persist in the population. People should be sensitized on the danger of living with infected persons. Government should do more in routine immunization and administration of Vitamin A Supplement.Item Stability and Bifurcation Analysis of a Mathematical Modeling of Measles Incorporating Vitamin A Supplement(Sule Lamido University Journal of Science and Technology (SLUJST), 2021-01-20) Somma, Samul Abu; Akinwande, N. I.; Gana, P.; Ogwumu, O. D.; Ashezua, T. T.; Eguda, F. Y.Measles is transmissible disease that is common among children. The death caused by measles among children of five years and below is alarming in spite of the safe and effective vaccine. It has been discovered that Vitamin A Deficiency (VAD) in children increases their chances of measles infection. In this paper, the mathematical model of measles incorporating Vitamin A supplement as treatment was formulated and analyzed. The equilibrium points are obtained and analyzed for stability. Bifurcation and sensitivity analyses were carried out to gain further insight into the spread and control of measles. The stability analysis revealed that Disease Free Equilibrium (DFE) is stable if Reproduction Number, 0 R 0 1 . The bifurcation analysis revealed forward bifurcation while the sensitivity analysis shows the most sensitive parameters of the model that are responsible for the spread and control of the diseases. The effect of sensitive parameters on Basic R were presented graphically. Vaccination, recovery and Vitamin A supplement rates have been shown from the graphical presentation as the important parameter that will eradicate the measles from the population while contact and loss of immunity rates have shown that measles will persist in the population. People should be sensitized on the danger of living with infected persons. Government should do more in routine immunization and administration of Vitamin A Supplement.