School of Physical Sciences (SPS)
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/36
School of Physical Sciences (SPS)
Browse
2 results
Search Results
Item Optimizing tuberculosis control: a comprehensive simulation of integrated interventions using a mathematical model(Mathematical Modelling and Numerical Simulation with Applications, 2024-09-30) Olumuyiwa James Peter; Afeez Abidemi; Fatmawati Fatmawati; Mayowa M. Ojo; Festus Abiodun OguntoluTuberculosis (TB) remains a formidable global health challenge, demanding effective control strategies to alleviate its burden. In this study, we introduce a comprehensive mathematical model to unravel the intricate dynamics of TB transmission and assess the efficacy and cost-effectiveness of diverse intervention strategies. Our model meticulously categorizes the total population into seven distinct compartments, encompassing susceptibility, vaccination, diagnosed infectious, undiagnosed infectious, hospitalized, and recovered individuals. Factors such as susceptible individual recruitment, the impact of vaccination, immunity loss, and the nuanced dynamics of transmission between compartments are considered. Notably, we compute the basic reproduction number, providing a quantitative measure of TB transmission potential. Through this comprehensive model, our study aims to offer valuable insights into optimal control measures for TB prevention and control, contributing to the ongoing global efforts to combat this pressing health challenge.Item Local Stability Analysis of a Tuberculosis Model incorporating Extensive Drug Resistant Subgroup(Pacific Journal of Science and Technology (PJST), 2017-05-20) Eguda, F. Y.; Akinwande, N. I.; Abdulrahman, S.; Kuta, F. A.; Somma, Samuel AbuThis paper proposes a mathematical model for the transmission dynamics of Tuberculosis incorporating extensive drug resistant subgroup. The effective reproduction number was obtained and conditions for local stability of the disease R c free equilibrium and endemic equilibrium states were established. Numerical simulations confirmed the stability analysis and further revealed that unless proper measures are taken against typical TB, progression to XDR-TB, mortality and morbidity of infected individuals shall continue to rise.