School of Physical Sciences (SPS)
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/48
School of Physical Sciences (SPS)
Browse
3 results
Search Results
Item A Mathematical Model of a Yellow Fever Dynamics with Vaccination(Journal of the Nigerian Association of Mathematical Physics, 2015-11) F. A. Oguntolu; N. I. Akinwande; S. A. Somma; F. Y. Eguda; T. T. AshezuaIn this paper, a mathematical model describing the dynamics of yellow fever epidemics, which involves the interactions of two principal communities of Hosts (Humans) and vectors (mosquitoes) is considered. The existence and uniqueness of solutions of the model were examined by actual solution. We conduct local stability analysis for the model. The results show that it is stable under certain conditions. The system of equations describing the phenomenon was solved analytically using parameter-expanding method coupled with direct integration. The results are presented graphically and discussed. It is discovered that improvement in Vaccination strategies will eradicate the epidemics.Item Mathematical model for the control of measles(African Journals Online (AJOL), 2018-05-03) O. J. Peter; O. A. Afolabi; A. A. Victor; C. E. Akpan; F. A. OguntoluWe proposed a mathematical model of measles disease dynamics with vaccination by considering the total number of recovered individuals either from natural recovery or recovery due to vaccination. We tested for the existence and uniqueness of solution for the model using the Lipchitz condition to ascertain the efficacy of the model and proceeded to determine both the disease free equilibrium (DFE) and the endemic equilibrium (EE) for the system of the equations and vaccination reproduction number are given. Numerical simulation of the model shows that vaccination is capable of reducing the number of exposed and infectious population.Item Mathematical Modeling of Polio Virus Infection Incorporating Immigration and Vaccination(Faculty of Physical Sciences, University of Ilorin, 2019-12-01) G. Bolarin; I. U. Omatola; A. Yusuf; C. E. Odo; F. A. Oguntolu; M. A. PhilipA deterministic mathematical model for polio infection dynamics with emphasis on immigration and vaccination was formulated and analyzed. We derived the basic reproduction number, of the model formulated. The effective reproduction number was computed using the next generation matrix to enable a qualitative analysis to be carried out on the model. Also, the disease-free equilibrium and endemic equilibrium points were computed. On analyzing the equilibrium points, we found that the disease-free equilibrium point is locally asymptotically stable if and the condition for existence on an Endemic Equilibrium point was also established. More so, numerical simulations showed that vaccination coverage of about 75% would be enough to eradicate polio from the population.