School of Infrastructure Process Engineering and Technology (SIPET)
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/41
School of Infrastructure Process Engineering and Technology (SIPET)
Browse
4 results
Search Results
Item PARTIAL REPLACEMENT OF FINE AGGREGATE WITH WASTE GLASS IN CONCRETE MADE FROM BIDA NATURAL AGGREGATE(3rd International Engineering Conference (IEC 2019) Federal University of Technology, Minna, Nigeria, 2019) Alhaji, B.; Kolo, D. N.; Abubakar, Mahmud; Yusuf, A.; Abdullahi, A.; Mohammed, S.This study reports the experimental investigation on the suitability of waste glass as partial replacement for fine aggregate in concrete made using Bida natural aggregates (BNA). Glass is widely used in our daily lives through manufactured products such as sheet glass, bottles, glassware, and vacuum tubing. It is an ideal material for recycling. The increasing awareness of glass recycling speeds up inspections on the use of waste glass with different forms in various fields. Mix ratio of 1:2:4 batched by weight with water – cement ratio of 0.55 was used. The percentage replacement varied from 0% to 40% at 5% intervals. Slump test was conducted to assess the workability of the fresh concrete. The compressive strengths and densities of cured concrete cubes of sizes 150mm x 150mm x 150mm were evaluated at 7, 21 and 28days. A total of 81 concrete cubes were cast and tested. It was observed that an increase in the percentage replacement of fine aggregate with waste glass reduces workability, density and compressive strength. The compressive strength and density vary with days of curing. The findings of this study indicated that the optimum replacement percentage of waste glass with conventional fine aggregate was 20%. However waste glass can effectively be used as fine aggregate replacement (up to 40%) without substantial change in concrete strength.Item Development of an Android Based Mobile Application for Design and Detailing of Pad Foundations to BS8110(Epistemics in Science, Engineering and Technology, 2017) Yusuf, A.; Aminulai, H. O.; Abdullahi, A.; Abubakar, Mahmud; Alhaji, B.Many innovative computer software have been developed to perform the task of designing and detailing structural elements such as beams, columns, slabs and foundations. This design and detailing can be done using mobile devices but software developed to operate on such devices have not been fully developed. However, this research is aimed at developing an android based mobile application for the design of pad foundations to Bs8110. The mobile application developed designs isolated axially loaded-only; axially loaded with moment pad footings as well as combined pad footings. The mobile application developed was tested using three typical test parameters and results compared to the manual computations. There was no significant variation in the steel sections required and provided for the manual design and that generated by the mobile application. The steel required by manual design for the axially loaded pad footing was 835mm2/m and that generated by the application was 837.2mm2/m. That of the axially loaded with moment gave required steel section as 1019mm2/m using manual design. This android based mobile application would thus give the structural engineer the leverage to design pad footings anywhere and anytime.Item PROBABILITY-BASED CALIBRATION OF LOAD DURATION MODIFICATION FACTORS FOR THE NIGERIAN GROWN TIMBER(NIGERIA JOURNAL OF ENGINEERING AND APPLIED SCIENCES (NJEAS), 2023) Aguwa. J. I.; Sadiku, S.; Afolayan, J. O.; Abdullahi, A.; Abubakar, Mahmud; Kolo, D. N.All along, load duration modification factors used in Nigeria for design of timber structures were based on BS 5268 of 2002 and this is not a good engineering practice since the strength of timber depends so much on the soil as well as on the environment. There is the need to localize the modification factors based on our environment since Nigerian grown timber is generally used for all timber structures designed and built in Nigeria. Probability-based calibration of load duration modification factors for the Nigerian grown timber was successfully carried out. The results showed significant difference between the calibrated factors and those from BS 5268 of 2002. The calibrated modification factors are; 1.25 for long-term, 1.35 for medium-term, 1.70 for short term, and 2.0 for very short-term duration. This paper recommends the use of these calibrated load duration factors based on Nigerian grown environment.Item Partial Replacement of Fine Aggregate with waste Glass in Concrete made from Bida Natural Aggregate(. Proceedings of the 3rd International Engineering Conference, Federal University of Technology Minna, Nigeria, 2019-02-05) Alhaji, B.; Kolo, D. N.; Abubakar M.; Yusuf A.; Abdullahi, A.; Shehu, M.This study reports the experimental investigation on the suitability of waste glass as partial replacement for fine aggregate in concrete made using Bida natural aggregates (BNA). Glass is widely used in our daily lives through manufactured products such as sheet glass, bottles, glassware, and vacuum tubing. It is an ideal material for recycling. The increasing awareness of glass recycling speeds up inspections on the use of waste glass with different forms in various fields. Mix ratio of 1:2:4 batched by weight with water cement ratio of 0.55 was used. The percentage replacement varied from 0% to 40% at 5% intervals. Slump test was conducted to assess the workability of the fresh concrete. The compressive strengths and densities of cured concrete cubes of sizes 150mm x 150mm x 150mm were evaluated at 7, 21 and 28days. A total of 81 concrete cubes were cast and tested. It was observed that an increase in the percentage replacement of fine aggregate with waste glass reduces workability, density and compressive strength. The compressive strength and density vary with days of curing. The findings of this study indicated that the optimum replacement percentage of waste glass with conventional fine aggregate was 20%. However waste glass can effectively be used as fine aggregate replacement (up to 40%) without substantial change in concrete strength.