School of Infrastructure Process Engineering and Technology (SIPET)
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/46
School of Infrastructure Process Engineering and Technology (SIPET)
Browse
23 results
Search Results
Item Drying kinetics, Energy requirement, Bioactive composition, and Mathematical Modeling of Allium Cepa Slices(2022-09-24) Asoiro, Felix; Simeon, Meshack Imologie; Azuka, Chinenye E.; Harami, SolomonItem DEVELOPMENT OF ALUMINIUM ALLOY (AA6061) COMPOSITES FOR AUTOMOBILE EXHAUST PIPE(Nigerian Journal of Engineering Science and Technology Research,, 2025) A. A. Ishola, M. S. Abolarin, J. Y. Jiya, and K. T. ObanimomoThis research addresses the limitations of aluminium alloy AA6061 in withstanding the harsh conditions of automotive exhaust systems. The study aims to develop a composite material with enhanced mechanical strength and corrosion resistance by reinforcing AA6061 with kaoline ore and masquerade leaves. Using the stir casting method, the alloy was combined with the reinforcements and cast into molds. The results revealed that the developed composites showed improved properties compared to the base alloy. Hardness increased from 95.4 HBW to 102.7 HBW, tensile strength rose to 270 N/mm², and yield strength to 240 N/mm². Corrosion resistance was significantly enhanced, with potential ranging from -300 mV to -550 mV, compared to -90 mV to -250 mV for the unreinforced alloy. Microstructural analyses confirmed uniform reinforcement distribution. The study recommends further optimization of reinforcement ratios and casting parameters to maximize performance for automotive applications, particularly in exhaust systems.Item Effects of Waste Glass Powder and Cassava Peel Ash on Compressive Strength of Concrete(Proceedings of the Third International Civil Engineering Conference (ICEC, 2024), 2025) Ndaiji, A. U.; Abdullahi, M.; Abbas, B. A.; Abubakar, MahmudThis study investigates the effects of incorporating glass waste powder (GWP) and cassava peel ash (CPA) as partial replacements for cement on the compressive strength of concrete. A total of 294 concrete cubes were prepared with varying proportions of GWP and CPA (0%, 5%, 10%, 15%, 20%, 25% and 30% replacement levels). Both materials were characterized by X-Ray Fluorescence (XRF) analytical method. The slump of fresh concrete with WGP and CPA of 0, 5, 10, 15, 20, 25 and 30% respectively by weight of cement was investigated in accordance with standard procedures. The results show that the compressive strength of concrete increased with the addition of GWP and CPA up to a certain replacement level. The 28 days compressive strength of concrete with 15% WGP/CPA content was 16.4 % more than normal, while that of concrete with 20% WGP/CPA content was 11.9 % less than normal. The optimal replacement levels for GWP and CPA were found to be 15% and 5%, respectively. The study concludes that the use of GWP and CPA as partial replacements for cement can improve it compressive strength, it sustainability and reduce the environmental impact of concrete production. The results of slump tests of different percentages of CPA/GWP as a partial replacement of cement in concrete production were observed for all proportion ranging between 12 – 41mm. However, 20% GWP/CPA replacement was considered as optimum for structural concrete.Item Numerical investigation of the impact of nonuniform corrosion on dynamic characteristics and nonlinear cyclic behaviour of circular RC bridge piers(Springer Netherlands (Bulletin of Earthquake Engineering), 2025-03-07) Zhang, Ziliang; Aminulai, Hammed O; Powrie, William; Kashani, Mohammad MInsufficient detail in the numerical modelling of reinforced concrete (RC) bridge piers can lead to oversimplification between simulated and real column behaviour under seismic loading. This paper describes the development and validation of an advanced and computationally efficient numerical model for circular RC bridge columns. First, the lateral stiffnesses, natural frequencies and damping ratios of three differently configured RC columns at various stages of degradation were evaluated by means of quasi-static cyclic and sledgehammer tests in loading cycles of increasing lateral drift amplitude. Normalised column lateral stiffness and first mode natural frequency were found to reduce nonlinearly with increasing column drift ratio. The two variables were also correlated to link RC column degradation with natural frequency reduction, which could allow rapid post earthquake assessment of residual capacity. RC columns suffering from heavy corrosion were found to have a higher natural frequency and a tendency to fail prematurely under cyclic loading, whereas the damping ratio was generally unchanged. A set of nonlinear beam-element models employing fibre-discretised cross-sections was then developed and validated against experimental measurements. The model simulates buckling, fracturing, low-cycle fatigue, and bond-slip of vertical reinforcements, as well as nonuniform geometrical and mechanical deterioration of critical column sections. Individual fibre responses in the numerical model offered explanations for specific features of the experimental column stiffness and natural frequency reduction curves. Underlying mechanisms included the redistribution of compressive stress between concrete and rebars during cyclic loading, crushing of cover concrete, and yield of vertical reinforcements. Overall, the model accurately simulates the hysteresis response of the differently configured RC columns, without the need for column-specific adjustments.Item Effect of floral locations on physicochemical and thermal honey bee properties.(AgricEngInt: CIGR Journal, 2022-03-30) Asoiro, Felix; Simeon, Meshack Imologie; Azuka, CEThe effects of floral location on the physicochemical and thermal parameters of honey bee samples from Enugu North senatorial zone were evaluated. For physicochemical properties, a 14×5×10 completely randomized design (CRD) with a total of 700 observations (14 physicochemical properties as responses × 5 levels of floral location as treatment × 10 replications) was conducted. For thermal properties, a 3×5×10 CRD with a total of 150 observations (3 thermal properties as responses × 5 levels of floral location as treatment × 10 replications) was also conducted. Floral location had significant effects (P≤0.05) on viscosity, electrical conductivity, sugar content, free acidity, ash content, moisture content, density, pH, colour, thermal heat conductivity and thermal heat diffusivity except, fructose/glucose (F/G) ratio and specific heat capacity. Viscosity of honey decreased as temperature increased with samples from Igbo-Eze South more viscose than those from other floral locations. Fructose had the highest mean value (35.26 g/100g), followed by glucose (31.92 g/100g) and sucrose (1.47 g/100g). All samples were generally acidic and of very high quality standard as Udenu, Igbo-Eze South and Nsukka honeys were adjudged extra white in colour, while Igbo-Eze North and Igbo-Etiti were white honey. Values for thermal heat conductivity and thermal heat diffusivity were 0.44 W m-1oC-1 and 3.51 m2s-1; 0.43 W m-1oC-1 and 3.84 m2s-1; 0.44 W m-1C-1 and 2.43 m2s-1; 0.44 W m-1oC-1 and 2.84 m2s-1; and 0.45 W m-1oC-1 and 2.69 m2s-1 for Igbo- Eze North, Udenu, Igbo-Eze South, Igbo-Etiti and Nsukka respectively. Honey is a promising food rich in essential minerals. Knowledge of its physicochemical and thermal properties is inevitable to facilitate its postharvest processing.Item Electrochemical evaluation of different polymer binders for the production of carbon-modified stainless-steel electrodes for sustainable power generation using a soil microbial fuel cell.(Chemical Engineering Journal Advances-Elsevier, 2022-01-11) Simeon, Meshack Imologie; Herkendell, Katharina; Pant, Deepak; Freitag, RuthIn this study, four different polymeric binders - polytetrafluoroethylene (PTFE), two-component epoxy (epoxy), polyvinyl alcohol (PVA), and polyvinylidene fluoride (PVDF) - were used to fabricate a surface-modified stainless-steel electrode. The polymeric binders were used to bond highly conductive carbon-black to a stainless-steel support using a simple fabrication method. The electrodes' performance in sustainable power generation was tested in a soil microbial fuel cell (SMFC). PTFE showed the fastest and best initial response in no-load operation, reaching a voltage of 370 mV after 7 days, compared to epoxy, PVA, and PVDF, which had 163, 151.7, and -26.7 mV, respectively. Electrochemical measurements showed that epoxy and PVDF have similar redox potentials when operated as anode and cathode in an SMFC. Evaluation of the long-term performance of the binders showed that epoxy gave 2.2-, 3.4-, and 4.9-fold higher performance than PVDF, PTFE, and PVA, respectively, under intermittent polarization. Although PVDF did not perform well in open circuits, it produced the highest current density in continuous operation with external loads. The most sustained performance was obtained with epoxy. This study has shown that epoxy can be a suitable and eco-friendly substitute for other binders using a simple fabrication method to produce high-performance anodes and cathodes for sustainable bioelectricity generation with a SMFC.Item Performance evaluation of microbial fuel cells for bioelectricity generation: influence of potential scan‑rate and real‑time external load(International Journal of Environmental Science and Technology-Springer Nature, 2024-01-19) Simeon, Meshack Imologie; Gbabo, Agidi; Feitag, RuthThe electrochemical performance of microbial fuel cells is conventionally assessed through linear sweep voltammetry at predefined potential scan rates. Nevertheless, this approach frequently falls short in representing the long-term behavior of microbial fuel cells under actual external loads, highlighting the need for a standardized evaluation method incorporating both linear sweep voltammetry and external loads. To address this gap, this study evaluates the performance of single-chamber microbial fuel cells under different loads and scan rates. The MFCs were tested with external loads of 1200, 470, and 270 Ω, derived from maximum power points of polarization sweeps at scan rates of 0.1, 0.5, and 1 mV/s at two operational phases. Power estimates at these scan rates were 61.96, 87.88, and 166.68 mW/m² at current densities of 116.5, 229.6, and 403 mA/m², respectively. In the initial two hours, average power densities with 1200, 470, and 270 Ω were 73 ± 16.7, 36.3 ± 42, and 88.5 ± 120.1 mW/m², respectively. Over the long term, the fuel cells under constant loading with resistance estimated at 0.1 mV/s showed average power 73.7% and 89.1% higher than those with resistances estimated at 0.5 mV/s and 1 mV/s, respectively, indicating that higher scan rates lead to overestimation of power. Although initially underestimated, the 0.1 mV/s scan rate more accurately reflected the true long-term performance of the fuel cells. This study emphasizes the importance of using appropriate scan rates for linear sweep voltammetry to obtain realistic long-term performance estimates of microbial fuel cells under real-time loads.Item A COMPARATIVE ANALYSIS OF GRILLAGE METHOD AND BEAM LINE ANALYSIS OF A REINFORCED CONCRETE WAFFLE BRIDGE DECK(2023) Adamu, H. N.; Abbas B.A.; Abubakar, M.; Yusuf, A.; Kolo, D.N.; Shehu, M.The analysis of a reinforced concrete waffle bridge deck using Chanchaga Bridge as a case study was carried out with the aid of computer programme written in MATLAB. The bridge deck which is a beam bridge was idealized to be a waffle slab. A mathematical model of the bridge was developed using the method of grillages because very complex shapes of problem domain with prescribed conditions can be handled easily using the method. The bridge deck was modelled as interconnection of grid elements. The analysis was carried out using direct stiffness matrix method. The nodal displacements and the resulting static internal forces; shear forces, bending moments and twisting moments of each grid element were determined using the matrix. The results obtained using the method of grillages were then compared with beam line analysis and the former method gave a 10% decrease in forces which will result in the reduction of overall design and materials by 10%.Item Durability of Sun Dried Clay Bricks Admixed with Cow Cone ash for Sustainable Development(USEP: Journal of Research Information in Civil Engineering, 2022) Abubakar, M; Abdullahi, H; Yabagi, M; Adamu H.N.Housing has remained a major challenge in Nigeria because of the increasing population and cost of building materials. To tackle the problem of housing deficit in the country, the government of Nigeria for some time now has been clamoring for the use of local materials in the construction industry to limit costs of construction. Thus, this paper looks at the potential of using cow-bone ash (CBA) to improve the durability of sun dried clay brick for sustainable development. Consistency properties, shrinkage, compressive strength and crack behavior of clay-cow-bone ash bricks were investigated in accordance with relevant codes and standards. It was however observed that, consistency properties and shrinkage decreased with increased percentage cow-bone ash addition while compressive strength and crack improved up to 10% CBA addition indicating that buildings made of clay-CBA composite could be more stable and durable than the ones made from clay alone. It is therefore recommended that Cow-bone ash can be used to improve the durability of clay brick at optimum addition level of 10%. Clay brick admixed with cow bone ash strongly contributes to the attainment of 12 out of the 17 sustainable development goals.Item EFFECTS OF OXIDIZED SUCROSE CROSS-LINKED CASSAVA STARCH FILM ON THE PHOTOVOLTAIC PROPERTIES OF PEROVSKITE SOLAR CELLS(The Nigerian Institution of Mechanical Engineers (A Division of Nigerian Society of Engineers), 2021-09) J. Y. Jiya; J. S. Enaburekhan; M. T. Jimoh; E. C. Egwim; I. A. JosephDespite rapid progress in the perovskite solar cell efficiency, there have been concerns about issues which could affect the measurement accuracy and/or practical applications of these devices, amongst which are stability, scaling up (large area devices), and possible environmental effects related to the use of lead-based active material. Based on the findings from previous studies, an optimized biodegradable oxidized sucrose cross-linked cassava starch film layer with zirconium oxide is introduced as a desiccant and buffer against damp heat and thermal recycling. This modified photovoltaic device is capable of resisting ingress of moisture at elevated temperatures, withstanding temperature cycling without delamination, and as such, enables efficient and stable operation. The layers in the PSC were modified by replacing the conventional metallic counter electrode with a low-cost carbon counter electrode. The PSC device with the control architecture underwent a more rapid degradation, particularly within the first 288 hours though with a higher PCE than the modified device. However, in contrast, the PSC device with the buffer layer only degraded a small amount. The best device maintained 95% of its initial efficiency after exposure for 550 hours.
- «
- 1 (current)
- 2
- 3
- »