Conference Papers
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/2
Conference Papers
Browse
2 results
Search Results
Item Local and Global Stability Analysis of a Mathematical Model of Measles Incorporating Maternally-Derived-Immunity(Proceedings of International Conference on Applied Mathematics & Computational Sciences (ICAMCS),, 2019-10-19) Somma, Samuel Abu; Akinwande, N. I.; Gana, P.In this paper, the local stabilities of both the Disease Free Equilibrium (DFE) and Endemic Equilibrium (EE) were analyzed using the Jacobian matrix stability technique. The global stabilities were analyzed using Lyapunov function. The analysis shows that the DFE is locally and globally stable if the basic reproduction number R 0 1 R 0 1 and R 0 1 respectively. The EE is also locally and globally stable if . Vaccination and recovery rates have been shown from the graphical presentation as the important parameter that will eradicate measles from the population.Item Stability Analysis for Mathematical Modeling of Dengue Fever Transmission and Control(Proceedings of International Conference on Contemporary Developments in Mathematical Sciences (ICCDMS), 2021-04-13) Aliyu, A. H.; Akinwande, N. I.; Somma Samuel AbuDengue fever is one of the greatest health challenges in the present world. In this work, mathematical modeling of dengue fever transmission and control was formulated. The model considered the human population h N and the vector population m N which are further subdivided into six classes, susceptible human 𝑆, infected human 𝐼, temporary recovered human class 1 R, permanently recovered human class 2 R , susceptible mosquito 1 M, and infected mosquito class 2 M . The Disease Free Equilibrium (DFE) point was obtained and the basic Reproduction number 0 R was computed. The Disease Free Equilibrium (DFE) is locally and globally asymptotically stable when 1 0 R .