Conference Papers

Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/2

Conference Papers

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    An Appraisal on the Application of Reproduction Number for the Stability Analysis of Disease - Free Equilibrium State for S-I-R Type Models
    (Proceedings of International Conference on Mathematical Modelling Optimization and Analysis of Disease Dynamics (ICMMOADD) 2024, 2024-02-28) Abdurrahman, Nurat Olamide; Somma S. A.; Akinwande, N. I.; Ashezua, T. T.; Gweryina, R.
    One of the key ideas in mathematical biology is the basic reproduction number, which can be utilized to comprehend how a disease epidemic profile might evolve in the future. The basic reproduction number, represented by R0 , is the anticipated number of secondary cases that a typical infectious individual would cause in a population that is fully susceptible. This threshold parameter is highly valuable in characterizing mathematical problems related to infectious diseases. If R0 < 1, this suggests that, on average, during the infectious period, an infected individual produces less than one new infected individual, suggesting that the infection may eventually be eradicated from the population. On the other hand, if R0 < 1, every infected person develops an average of multiple new infections, it suggests that the disease may continue to spread throughout the population. We discuss the Reproduction number in this work and provide some examples, both for straightforward and complicated situations.
  • Item
    Population dynamics of a mathematical model for Campylobacteriosis
    (Proceedings of International Conference on Mathematical Modelling Optimization and Analysis of Disease Dynamics (ICMMOADD), 2024-02-22) Ashezua, T. T.; Salemkaan, M. T.; Somma, Samuel Abu
    The bacterium campylobacter is the cause of campylobacteriosis, a major cause of foodborne illness that goes by the most common name for diarrheal illnesses. This paper develops and analyzes a new mathematical model for campylobacteriosis. It is demonstrated that in cases where the corresponding reproduction number is smaller than unity, the model's disease-free equilibrium is both locally and globally stable. The numerical simulation results indicate that increasing the treatment rate for both symptomatic and asymptomatic disease-infected individuals resulted in a decrease in the number of asymptomatic and symptomatic individuals, respectively, and a rise in the population's number of recovered individuals.
  • Item
    Modelling the Impacts of Media Campaign and Double Dose Vaccination in Controlling COVID-19 in Nigeria.
    (Alexandria Engineering Journal, 2023-02-21) Akinwande, N. I.; Somma, Samuel Abu; Olayiwola, R. O.; Ashezua, T. T.; Gweryina, R. I.; Oguntolu, F. A.; Abdurahman, O. N.
    Corona virus disease (COVID-19) is a lethal disease that poses public health challenge in both developed and developing countries of the world. Owing to the recent ongoing clinical use of COVID-19 vaccines and noncompliance to COVID-19 health protocols, this study presents a deterministic model with an optimal control problem for assessing the community-level impact of media campaign and double-dose vaccination on the transmission and control of COVID-19. Detailed analysis of the model shows that, using the Lyapunov function theory and the theory of centre manifold, the dynamics of the model is determined essentially by the control reproduction number (𝑅𝑚𝑣). Consequently, the model undergoes the phenomenon of forward bifurcation in the absence of the double dose vaccination effects, where the global disease-free equilibrium is obtained whenever 𝑅𝑚𝑣 ≤ 1. Numerical simulations of the model using data relevant to the transmission dynamics of the disease in Nigeria, show that, certain values of the basic reproduction number ((𝑅0 ≥ 7)) may not prevent the spread of the pandemic even if 100% media compliance is achieved. Nevertheless, with assumed 75% (at 𝑅0 = 4)) media efficacy of double dose vaccination, the community herd immunity to the disease can be attained. Furthermore, Pontryagin’s maximum principle was used for the analysis of the optimized model by which necessary conditions for optimal controls were obtained. In addition, the optimal simulation results reveal that, for situations where the cost of implementing the controls (media campaign and double dose vaccination) considered in this study is low, allocating resources to media campaign-only strategy is more effective than allocating them to a firstdose vaccination strategy. More so, as expected, the combined media campaign-double dose vaccination strategy yields a higher population-level impact than the media campaign-only strategy, double-dose vaccination strategy or media campaign-first dose vaccination strategy.