Conference Papers
Permanent URI for this communityhttp://197.211.34.35:4000/handle/123456789/2
Conference Papers
Browse
2 results
Search Results
Item Production of biodiesel from Balanite aegyptiaca seed oil using chemical-activated catalyst produced from coconut shell(Nigerian Research Journal of Chemical Sciences, 2024) Alheri, A.; Ago, M. A; Jamila, U. A.; Anyanwu, S. K.,; Bisiriyu, M. T.; Aisha, K. UHeterogeneous catalyst produced from coconut waste shell (CWS) via chemical activation was utilized for biodiesel production from Balanite aegyptiaca seed oil. The effects of impregnation ratios (2 – 10 g/cm3), activation temperatures (500 – 900 oC) and time (1 – 3 h) on the yield of catalyst were investigated. The chemical-activated catalyst produced from coconut shell was characterized by Scanning Electron Microscopy (SEM) and Fourier Transform Infra-Red (FT-IR) spectroscopy. The biodiesel was further characterized using GC-MS. The heterogeneous catalyst produced by chemical activation under the following optimum conditions: activation temperature (800 oC), impregnation ratio (3:6g/cm3), and reaction time (1 h) was of high yield. SEM images showed a highly porous characteristic, with lots of cavities and strands on the surface. The optimum conditions to achieve maximum yield of the biodiesel (82.9%) were reaction temperature (40 oC), methanol/oil molar ratios (9:1 cm3), catalyst concentration (1.0 g/cm3) and reaction time (60 min). The fuel properties of biodiesel produced by chemical activation catalyst were: kinematic viscosity (5.70 mm2/s), specific gravity (0.86), pour point (9 oC), flash point (185 oC), cloud point (9 oC), colour 1.0 and cetane number 62. The GC-MS analysis demonstrated the presence of decanoic acid methyl ester, hexadecanoic acid, methyl ester, 4-hexenoic acid methyl ester and pentadecanoic acid methyl ester. The study showed that chemically produced heterogeneous catalyst from coconut waste shell can be used for the production of biodiesel.Item Assessment of Foliose Epiphytic Lichen (Parmelia sulcata) as Bioindicators of Atmospheric Trace Metals Pollution in Lapai Metropolis, Niger State(Science View Journal, 2024-01) Ibrahim, M.; Tsafe, A. I.; Gungshik, J. R.; Abdulkarim, A. M.; Zhikpe, Y. B.; Bisiriyu, M. T.The levels of atmospheric trace metals were determined using foliose epiphytic lichens (Parmelia sulcata) samples collected in eight (8) different locations within the residential areas and two control locations outside the residential area of Lapai town in Lapai local government of Niger State. A stratified random sampling technique was adopted and the analysis of the samples with atomic absorption spectrophotometer (AAS) gives the concentration (mg/kg) range of the metals as follows; 1.123-7.837 for Fe, 4.579-6.62 for Pb, 0.210-2.152 for Cr, 0.491-1.171 g for Ni, 0.018-0.983 for Cd, 0.057-1.471 g Zn, 0.198-1.287 for Mn, and 0.098-2.583 for Cu but Selenium was not detected in all the samples. The levels of some of these metals were slightly higher than the recommended USEPA (1993) limits but lower than FEPA (1991) limits. However, the distribution of these metals was not uniform across the samples, though their level was still at the background and very low compared to the reports on similar studies from industrialized areas of South-south and South-west Nigeria and other European countries. The variation in concentration of these metals at p≤0.05 indicates their source is mainly anthropogenic in origin. Epiphytic lichens validate the cost-effectiveness of this method for evaluating, assessing, and identifying depositional sources of the metals in the environment. The study revealed the atmospheric trace metal concentration of the area under study to be at a threshold level and hence the environment is still very safe from atmospheric trace metal pollution.