A MATHEMATICAL MODEL OF YELLOW FEVER DISEASE DYNAMICS INCORPORATING SPECIAL SATURATION INTERACTIONS FUNCTIONS

dc.contributor.authorAkinwande, N. I.
dc.contributor.authorAbdulrahman, S.
dc.contributor.authorAshezua, T. T.
dc.contributor.authorSomma, Samuel Abu
dc.date.accessioned2025-04-15T06:58:23Z
dc.date.issued2017-05-05
dc.description.abstractWe proposed an Mathematical Model of Yellow Fever Disease Dynamics Incorporating Special Saturation Process functions, obtained the equilibrium states of the model equations and analyzed same for stability. Conditions for the elimination of the disease in the population are obtained as constraint inequalities on the parameters using the basic reproduction number 0 R demographic and epidemiological data. . Graphical simulations are presented using some
dc.identifier.urihttp://repository.futminna.edu.ng:4000/handle/123456789/704
dc.language.isoen
dc.publisher1st SPS Biennial International Conference Federal University of Technology, Minna, Nigeria
dc.subjectBasic Reproduction Number
dc.subjectEquilibrium States
dc.subjectSaturation Process
dc.subjectStability
dc.titleA MATHEMATICAL MODEL OF YELLOW FEVER DISEASE DYNAMICS INCORPORATING SPECIAL SATURATION INTERACTIONS FUNCTIONS
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
SPS 2017-PROCEEDINGS -583-594.pdf
Size:
1.03 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections