Mathematical Analysis of a Contaminant Flow in a Finite Medium using the Weighted Residual Method

dc.contributor.authorJIMOH, OMANANYI RAZAQ
dc.contributor.authorAiyesimi, Y. M.
dc.contributor.authorJiya, M.
dc.contributor.authorBolarin, G. A.
dc.date.accessioned2025-04-19T20:57:21Z
dc.date.issued2015-02-01
dc.description.abstractIn this paper, a Galerkin weighted Residual method is used in providing an analytical solution of two-dimensional contaminant flow problem with non-zero initial concentration. The equation is described by advection, dispersion, adsorption, first order decay and zero-order source. It is assumed that the adsorption term is modeled by Freudlich isotherm. Using Bubnov-Galerkin method, the governing equation was converted to a discrete problem. Thereafter, the approximate solution of the resulting system of initial value problem was obtained. The results obtained are expressed in graphical form to show the effect of change in the parameters on the concentration of the contaminants. From the analysis of the results, it was discovered that the contaminant concentration decreases with increase in the distance from the origin while it increases with increase in the zero-order source coefficient.
dc.identifier.issn2408 – 4840
dc.identifier.urihttp://repository.futminna.edu.ng:4000/handle/123456789/825
dc.language.isoen
dc.publisherIlorin Journal of Science
dc.subjectAdvection
dc.subjectdispersion
dc.subjectadsorption
dc.subjectcontaminant
dc.subjectGalerkin weighted residuals.
dc.titleMathematical Analysis of a Contaminant Flow in a Finite Medium using the Weighted Residual Method
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Jimoh et al. (2015).pdf
Size:
421.98 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections